Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = TRUE
)
## -----------------------------------------------------------------------------
library(Superpower)
Superpower_options(verbose = FALSE,
plot = FALSE)
nsims = 250
## ---- fig.width=7, fig.height=4-----------------------------------------------
design <- "3b"
n <- 50
mu <- c(24, 26.2, 26.6)
sd <- 6.4
label_list = list("condition" = c("control", "cat", "dog"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
label_list = label_list,
plot = TRUE)
## -----------------------------------------------------------------------------
library(pwr)
pwr.t.test(d = 2.2/6.4,
n = 50,
sig.level = 0.05,
type="two.sample",
alternative="two.sided")$power
pwr.t.test(d = 2.6/6.4,
n = 50,
sig.level = 0.05,
type="two.sample",
alternative="two.sided")$power
pwr.t.test(d = 0.4/6.4,
n = 50,
sig.level = 0.05,
type="two.sample",
alternative="two.sided")$power
## ----eval=FALSE---------------------------------------------------------------
# plot_power(design_result, min_n = 10, max_n = 250)
## ---- fig.width=7, fig.height=4-----------------------------------------------
design <- "3b"
n <- 134
mu <- c(24, 26.2, 26.6)
sd <- 6.4
label_list = list("condition" = c("control", "cat", "dog"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
label_list = label_list,
plot = FALSE) #do not print the plot (same as above)
ANOVA_exact2(design_result,
emm = TRUE)
n <- 180
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
label_list = label_list,
plot = FALSE) #do not print the plot (same as above)
ANOVA_exact2(design_result,
emm = TRUE)
n <- 5380
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
label_list = label_list,
plot = FALSE) #do not print the plot (same as above)
ANOVA_exact2(design_result,
emm = TRUE)
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_9.png")
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_1.png")
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_11.png")
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_10.png")
## ---- fig.width=7, fig.height=4-----------------------------------------------
K <- 2
n <- 34
sd <- 1
r <- 0.5
alpha = 0.05
f <- 0.25
f2 <- f^2
ES <- f2/(f2+1)
ES
mu <- mu_from_ES(K = K, ES = ES)
design = paste(K,"w",sep="")
label_list <- list("speed" =c("fast", "slow"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
label_list = label_list,
plot = TRUE)
ANOVA_exact2(design_result,
emm = TRUE)
## ---- fig.width=7, fig.height=4-----------------------------------------------
K <- 2
n <- 34
sd <- 1
r <- 0.7
alpha = 0.05
f <- 0.25
f2 <- f^2
ES <- f2/(f2+1)
ES
mu <- mu_from_ES(K = K, ES = ES)
design = paste(K,"w",sep="")
label_list <- list("speed" = c("fast", "slow"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
label_list = label_list,
plot = TRUE)
ANOVA_exact2(design_result,
emm = TRUE)
## -----------------------------------------------------------------------------
mu <- c(3.8, 4.2, 4.3)
sd <- 0.9
f <- sqrt(sum((mu-mean(mu))^2)/length(mu))/sd #Cohen, 1988, formula 8.2.1 and 8.2.2
f
r <- 0.7
(4.2-3.8)/0.9/sqrt(2*(1-r))
(4.3-3.8)/0.9/sqrt(2*(1-r))
(4.3-4.2)/0.9/sqrt(2*(1-r))
## ---- fig.width=7, fig.height=4-----------------------------------------------
K <- 3
n <- 20
sd <- 1
r <- 0.8
alpha = 0.05
f <- 0.25
f2 <- f^2
ES <- f2/(f2+1)
ES
mu <- mu_from_ES(K = K, ES = ES)
sqrt(sum((mu-mean(mu))^2)/length(mu))/sd #Cohen, 1988, formula 8.2.1 and 8.2.2
design = paste(K,"w",sep="")
label_list <- list("speed" = c("fast", "medium", "slow"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
label_list = label_list,
plot = TRUE)
power_result = ANOVA_power(design_result,
nsims = 250)
confint(power_result,
param = "main_results",
level = .98)
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_12.png")
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_14.png")
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_5.png")
## ---- fig.width=7, fig.height=4-----------------------------------------------
mu <- c(-0.25, 0.25, 0.25, -0.25)
n <- 23
sd <- 1
r <- 0.5
design = "2w*2b"
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
plot = TRUE)
ANOVA_exact2(design_result,
emm = TRUE)
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/gpower_6.png")
## ---- fig.width=7, fig.height=4-----------------------------------------------
mu <- c(-0.25, 0.25, 0.25, -0.25)
n <- 23
sd <- 1
r <- 0.7
design = "2w*2b"
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
plot = TRUE)
ANOVA_exact2(design_result,
emm = TRUE)
## ----mean-plot, fig.width=7, fig.height=4, echo=FALSE, message=FALSE, warning=FALSE, results='hide', fig.cap="Vizualization for the expected means and confidence intervals for a crossover interaction."----
# To save time compiling this vignette, we ran these simulations once, and stored them
design_result_cross_80 <- ANOVA_design(design = "2b*2b",
n = 80,
mu = c(1, 0, 0, 1),
sd = 2,
label_list = list("condition" = c("cheerful","sad"),
"voice" = c("human", "robot")))
plot(design_result_cross_80)
#
power_result_cross_80 <- ANOVA_exact(design_result_cross_80, alpha_level = 0.05, verbose = FALSE)
# To save time compiling this vignette, we ran these simulations once, and stored them
design_result_cross_40 <- ANOVA_design(design = "2b*2b",
n = 40,
mu = c(1, 0, 0, 1),
sd = 2,
label_list = list("condition" = c("cheerful", "sad"),
"voice" = c("human", "robot")), plot = FALSE)
#
power_result_cross_40 <- ANOVA_exact(design_result_cross_40, alpha_level = 0.05, verbose = FALSE)
#Analytic solution
power_twoway_between(design_result_cross_40)$power_A
power_twoway_between(design_result_cross_40)$power_B
power_twoway_between(design_result_cross_40)$power_AB
## ----sim-interaction-2, message=FALSE, warning=FALSE-------------------------
# To save time compiling this vignette, we ran these simulations once, and stored them
design_result_ordinal <- ANOVA_design(design = "2b*2b",
n = 160,
mu = c(1, 0, 0, 0),
sd = 2,
label_list = list("condition" = c("cheerful", "sad"),
"voice" = c("human", "robot")))
#
power_result_ordinal <- ANOVA_power(design_result_ordinal,
alpha_level = 0.05,
p_adjust = "none",
seed = 2019,
nsims = nsims)
knitr::kable(confint(power_result_ordinal,
parm = "main_results",
level = .98))
knitr::kable(confint(power_result_ordinal,
parm = "pc_results",
level = .98))
#Analytic solution
power_twoway_between(design_result_ordinal)$power_A
power_twoway_between(design_result_ordinal)$power_B
power_twoway_between(design_result_ordinal)$power_AB
power_twoway_between(design_result_ordinal)$Cohen_f_AB
power_twoway_between(design_result_ordinal)$eta_p_2_AB
## ----sim-interaction-3, echo=FALSE, message=FALSE, warning=FALSE, include=FALSE----
design_result <-ANOVA_design(design = "2b*2b",
n = 40,
mu = c(2, 0, 0, 0),
sd = 2,
label_list = list("condition" = c("cheerful", "sad"),
"voice" = c( "human", "robot")))
#Analytic solution
power_twoway_between(design_result)$power_A
power_twoway_between(design_result)$power_B
power_twoway_between(design_result)$power_AB
power_twoway_between(design_result)$Cohen_f_AB
power_twoway_between(design_result)$eta_p_2_AB
design_result <- ANOVA_design(design = "2b*2b*2b",
n = 20,
mu = c(4, 0, 0, 0, 0, 0, 0, 0),
sd = 2,
label_list = list(
"condition" = c("cheerful", "sad"),
"voice" = c("human", "robot"),
"factor_c" = c("c1", "c2")
))
power_threeway_between(design_result)$power_ABC
power_threeway_between(design_result)$Cohen_f_ABC
## ---- fig.width=7, fig.height=4-----------------------------------------------
design <- "3b*3b"
n <- 20
mu <- c(20, 20, 20, 20, 20, 20, 20, 20, 25)
# Enter means in the order that matches the labels below.
sd <- 5
label_list <- list("Factor_A" = c("a1", "a2", "a3"),
"Factor_B" = c("b1", "b2", "b3")) #
# the label names should be in the order of the means specified above.
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
label_list = label_list)
plot(design_result)
res = ANOVA_exact2(design_result,
alpha_level = 0.05)
print(res)
## -----------------------------------------------------------------------------
power_res <- power_twoway_between(design_result) #using default alpha level of .05
power_res$power_A
power_res$power_B
power_res$power_AB
## ---- eval=FALSE--------------------------------------------------------------
# # Not Run
# plot_power(design_result, min_n = 20, max_n = 100)
## ---- out.width = "600px", echo=FALSE-----------------------------------------
knitr::include_graphics("screenshots/PS2000.gif")
## ---- fig.width=7, fig.height=4-----------------------------------------------
mu = c(2,1,4,2)
n <- 20
sd <- 5
r <- c(
0.8, 0.5, 0.4,
0.4, 0.5,
0.8
)
design = "2w*2w"
label_list = list("A" =c( "a1", "a2"),
"B" = c("b1", "b2"))
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
label_list = label_list,
plot = TRUE)
power_result_vig_4 = ANOVA_power(design_result,
nsims = nsims)
knitr::kable(confint(power_result_vig_4, level = .98))
## ----eval=FALSE---------------------------------------------------------------
# # Not Run
# ANOVA_exact2(design_result = design_result)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.