R/utils-Pwr.R

Defines functions Pwr sigmaTolme

Documented in Pwr

#' @title Helper function for Pwr(function) to change the residual standard error (sigma) of the model.
#' @description
#' Use this function only with Pwr(), because it  corrupts lme.object
#' @param object an "lme" object containing the model fit, which provides information needed for power calculations
#' @param value value for sigma
#' @returns An "lme" object containing the model fit with changed sigma value.
#' @keywords internal
#' @noRd

sigmaTolme <- function(object, value){ 
  ### Use this function only with Pwr(), because it  corrupts lme.object
  funNm <- "sigmaTolme"
  
  .functionName <- "simgmaTolme"                                # Function name
  .traceR <- if (is.null(options()$traceR)) function(...){} else options()$.traceR 
  
  .traceR(1, lbl = "-> sigmaTolme STARTS")
  sigma0 <- object$sigma 
  val <- value * value
  sc  <- sqrt(val)/sigma0  
  object$sigma <- sqrt(val)
  #resids <- object$residuals
  #resids <- resids * sc  
  #std <- attr(resids,"std")*sc
  ## attr(object$residuals,"std") <- std
  
  attr(object$fixDF, "varFixFact") <- 
    sc*attr(object$fixDF, "varFixFact") # Rescaled for anova
  .traceR(5, vcov(object)*sc*sc, funNm)
  
  object$varFix  <- object$varFix*sc*sc  # vcov rescaled  
  .traceR(1, lbl = "sigmaTolme ENDS <-")
  object
}


## -> Pwr function
#' Calculates power based on a model fit
#'
#' This function is generic; method functions can be written to handle specific classes of objects.
#' @export
#' @param object an object containing the results returned by a model fitting function (e.g., \code{lme}).
#' @param \dots some methods for this generic function may require additional arguments.
#' @return numeric scalar value.
#' @author Andrzej Galecki and Tomasz Burzykowski
#' @seealso \code{\link{Pwr.lme}}
#' @examples
#' data("grwth_data")
#' lmm <- lmmModel(data = grwth_data,
#'                 sample_id = "subject",
#'                 time = "Time",
#'                 treatment = "Treatment",
#'                 tumor_vol = "TumorVolume",
#'                 trt_control = "Control",
#'                 drug_a = "DrugA",
#'                 drug_b = "DrugB",
#'                 combination = "Combination")
#' Pwr(lmm,
#'     L = c("Time:TreatmentControl" = 1,
#'     "Time:TreatmentDrugA" = -1,
#'     "Time:TreatmentDrugB" = -1,
#'     "Time:TreatmentCombination" = 1))
#'  
Pwr <-  function(object, ...) UseMethod("Pwr")


## -> Pwr.lme function
#' Performs power calculations
#'
#' This is method for \code{Pwr()} generic function. It is a modified version from the
#' one described by Galecki and Burzykowski implemented in `nlmeU` package ([nlmeU::Pwr.lme]).
#'
#' @method Pwr lme
#' @param object an object containing \code{lme} fit, which provides information needed for power calculations
#' @param \dots some additional arguments may be required.
#' @param type an optional character string specifying the type of sum of squares to be used in F-tests 
#'  needed for power calculations. Syntax is the same as for \code{anova.lme()} in \code{nlme} package.
#' @param Terms an optional integer or character vector specifying which terms
#'  in the model should be jointly tested to be zero using a Wald F-test. See
#'  \code{anova.lme} in \code{nlme} package for details.
#' @param L an optional numeric vector or array specifying linear combinations
#'  of the coefficients in the model that should be tested to be zero. See
#'  \code{anova.lme} in \code{nlme} package for details.
#' @param verbose an optional logical value. See \code{anova.lme} in nlme package for details.
#' @param sigma numeric scalar value.
#' @param ddf numeric scalar value. Argument can be used to redefine default number of denominator degrees of freedom
#' @param alpha numeric scalar value. By default 0.05.
#' @param altB matrix/vector containing alternative values for beta parameters
#' @param tol numeric scalar value.
#' @return a data frame inheriting from class Pwr.lme
#' @exportS3Method Pwr lme
#' @references 
#' - Andrzej Galecki & Tomasz Burzykowski (2013) _Linear Mixed-Effects Models Using R: A Step-by-Step Approach_ First Edition. Springer, New York. ISBN 978-1-4614-3899-1
#' @seealso [nlme::anova.lme], [nlmeU::Pwr.lme]
#' 
Pwr.lme <- function (object, ...,
                     type = c("sequential", "marginal"), 
                     Terms, L, verbose = FALSE, sigma, ddf= numeric(0), alpha=0.05,
                     altB = NULL, tol = 1e-10) 
{
  ## Arguments: 
  ##  1. object: one object only
  #   2. adjustSigma set to FALSE. (Try to explore adjustSigma argument if missing(sigma) 
  #   3. Alternative altB name
  
  .functionName <- "Pwr.lme"                                # Function name
  .traceR <- if (is.null(options()$traceR)) function(...){} else options()$.traceR    
  
  .traceR(1, lbl = "-> Pwr.lme starts")
  if (!inherits(object, "lme")) {
    stop("Object must inherit from class \"lme\" ")
  }
  
  Lmiss <- missing(L)
  Tmiss <- missing(Terms)    
  Lx <- !Tmiss || !Lmiss     # Contrasts matrix L can be created 
  fixefs <- object$coefficients$fixed
  fixefNms <- names(fixefs)
  if (!Lx && !missing(sigma)) stop("L or Terms arguments need to be specified with non-missing sigma argument") 
  ### optx <- if (object$sigma < tol) FALSE else TRUE
  
  .traceR(10) 
  if (!Tmiss && Lmiss){          # IF 1  (Check this part)
    .traceR(101, lbl = "IF1", store = FALSE)
    ##  Based on Terms argument L matrix is created (with colnames)
    ##  Colnames assigned
    
    cLnms <- fixefNms
    assign <- attr(object$fixDF, "assign")
    nTerms <- length(assign)
    nX <- length(unlist(assign))
    L <- diag(nX)[unlist(assign[Terms]), , drop = FALSE]
    colnames(L) <- cLnms 
    cLnms <- NULL
  }
  
  if (!missing(sigma)) object <- sigmaTolme(object,  value=sigma) # nlmeU::: 
  
  x <- anova(object, adjustSigma=FALSE,
             test=TRUE,type=type, L=L, verbose=verbose)  # ANOVA results stored in x 
  .traceR(15)  
  
  
  rt <- attr(x,"rt")   ### Check whether rt is needed
  
  ndf <- x[["numDF"]]
  
  ddf2 <- if (length(ddf)) ddf else x[["denDF"]] #  ddf2 is needed
  rankL <- ndf
  
  
  .traceR(20, lbl = "Before if Lx")
  
  if (Lx){ 
    .traceR(201, lbl = "if Lx", store = FALSE) 
    ## Terms or L present: cLnms created for later use
    dimL <-  if (Lmiss) NULL else dim(L)             # Extract clNms from L argument
    condt <- !Lmiss && is.null(dimL)
    ## cLnms over-written
    cLnms <- if (condt) names(L) else colnames(L)  
    
  }
  
  .traceR(202, lbl = "ifLxBefore")
  if (!is.null(altB) && Lx){ # START
    .traceR(210, lbl = "IF 4", store = FALSE)
    
    if (!Lmiss && is.null(dimL))  {
      .traceR(211, lbl = "IF 3", store = FALSE)
      #print("if here 2")
      dim(L) <- c(1,length(L))  # L is matrix
      colnames(L) <- cLnms
    }
    .traceR(215, lbl = "altB")
    ### Go through altB
    altBdt <- as.data.frame(altB)
    altBnrow <- nrow(altBdt)
    altBnms  <- names(altBdt)
    fixefx <- object$coefficients$fixed
    dt1 <- data.frame(matrix(rep(fixefx, altBnrow), nrow= altBnrow, byrow = TRUE))
    names(dt1) <- fixefNms
    #print(names(dt1))
    dt1[, altBnms] <- altBdt
    #print(names(dt1))
    
    ##  Trimming dimensions
    vcovb <- object$varFix
    if (length(cLnms) < length(fixefNms)){
      vcovb <- vcovb[cLnms,cLnms]
      dt1efs  <- as.matrix(dt1[cLnms])
    }
    if(length(cLnms) == length(fixefNms)){
      dt1efs  <- as.matrix(dt1)
    }
    .traceR(216, lbl = "altB")
    
    
    Fstat <- function(bx) {
      b1 <- L %*% bx
      res0 <- t(b1) %*% solve( L %*% vcovb %*% t(L)) %*% b1
      # Return Lcontrasts i.e. b1 vector together with res0
      res0/rankL
    }
    
    FstatAll <- apply(dt1efs, 1, Fstat)
    .traceR(217, lbl = "FstatAll")
    #dtAll1  <- data.frame(dt1,  numDF = ndf, denDF = ddf2, 
    #          Fvalue = FstatAll)
    
    dtAll2 <- within(dt1, {
      numDF <- ndf
      denDF <- ddf2
      Fvalue <- FstatAll
      Fcrit <- qf(1-alpha, numDF, denDF)
      nc   <- Fvalue * numDF
      Power <- 1- pf(Fcrit, numDF,denDF,nc)
    })
    .traceR(218, lbl = "EXITdtAll2")
    return(dtAll2)
  }  # END
  .traceR(21, lbl = "ifLx After")
  Fcrit <- qf(1-alpha, ndf, ddf2)
  
  ncx <- x[["F-value"]]*ndf  # Rescaling not needed
  
  Power <- 1- pf(Fcrit, ndf, ddf2, ncx) 
  
  F0val <- x[["F-value"]] 
  .traceR(25, lbl=  "F0val")
  
  ret <- data.frame(x$numDF, ddf2, F0val, ncx, Power) #Fcrit omitted
  
  
  varNames <- c("numDF", "denDF","F-value", "nc", "Power")  # Fcrit omitted
  vcovb <- object$varFix 
  
  .traceR(30, lbl=  "if attr(x,L) before")
  if (!is.null(axL <- attr(x, "L"))) {  # L mtx specified
    .traceR(301, lbl= "IF5", store = FALSE)      
    if (!Tmiss) lab <- paste("Power calculations for effect(s):", 
                             paste(Terms, collapse = ", "), "\n",
                             " represented by linear combination: \n")
    
    if (!Lmiss)  lab <- "Power calculations for a linear combination: \n"
    dimL <- dim(L)
    if (is.null(dimL)) names(L) <- cLnms
    attr(ret,"L") <- L
    names(ret) <- varNames
  } else {   #  L not-specified. Effects tested one by one.
    .traceR(302, lbl= "ELSE5", store = FALSE)       
    # lab <- paste("Power calculations for effect(s):", Terms,"\n")  
    dimnames(ret) <- list(rownames(x),varNames)  ## ???
  }
  .traceR(30, lbl=  "if attr(x,L) after")  
  
  ### Modify lab.
  ### if alpha= ne 0.05 then paste(lab, alpha=)
  ### if ddf is NULL then warning ddf2 incorrect
  if (!is.null(attr(x, "label"))) {  
    attr(ret,"label") <- lab 
  } else {
    attr(ret,"label") <- "Power calculations: \n" 
  }
  attr(ret, "coefficients") <- object$coefficients$fixed
  attr(ret,"varFixed")   <- vcovb
  
  attr(ret,"alpha") <- alpha
  attr(ret,"rt") <- rt
  
  class(ret)  <- c("Pwr.lme","data.frame")
  .traceR(1, lbl="Pwr.lme ENDS <-")
  ret
}

Try the SynergyLMM package in your browser

Any scripts or data that you put into this service are public.

SynergyLMM documentation built on April 4, 2025, 4:13 a.m.