Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the estimation of regression coefficients using the principles of the Horvitz-Thompson estimator
1 |
N |
The population size |
n |
The sample size |
y |
Vector, matrix or data frame containing the recollected information of the variables of interest for every unit in the selected sample |
x |
Vector, matrix or data frame containing the recollected auxiliary information for every unit in the selected sample |
ck |
By default equals to one. It is a vector of weights induced by the structure of variance of the supposed model |
b0 |
By default FALSE. The intercept of the regression model |
Returns the estimation of the population regression coefficients in a supposed linear model, its estimated variance and its estimated coefficient of variation under an SI sampling design
The function returns a vector whose entries correspond to the estimated parameters of the regression coefficients
Hugo Andres Gutierrez Rojas hagutierrezro@gmail.com
Sarndal, C-E. and Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros.
Editorial Universidad Santo Tomas.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | ######################################################################
## Example 1: Linear models involving continuous auxiliary information
######################################################################
# Draws a simple random sample without replacement
data(Lucy)
attach(Lucy)
N <- dim(Lucy)[1]
n <- 400
sam <- S.SI(N, n)
# The information about the units in the sample
# is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
########### common mean model
estima<-data.frame(Income, Employees, Taxes)
x <- rep(1,n)
E.Beta(N, n, estima,x,ck=1,b0=FALSE)
########### common ratio model
estima<-data.frame(Income)
x <- data.frame(Employees)
E.Beta(N, n, estima,x,ck=x,b0=FALSE)
########### Simple regression model without intercept
estima<-data.frame(Income, Employees)
x <- data.frame(Taxes)
E.Beta(N, n, estima,x,ck=1,b0=FALSE)
########### Multiple regression model without intercept
estima<-data.frame(Income)
x <- data.frame(Employees, Taxes)
E.Beta(N, n, estima,x,ck=1,b0=FALSE)
########### Simple regression model with intercept
estima<-data.frame(Income, Employees)
x <- data.frame(Taxes)
E.Beta(N, n, estima,x,ck=1,b0=TRUE)
########### Multiple regression model with intercept
estima<-data.frame(Income)
x <- data.frame(Employees, Taxes)
E.Beta(N, n, estima,x,ck=1,b0=TRUE)
###############################################################
## Example 2: Linear models with discrete auxiliary information
###############################################################
# Draws a simple random sample without replacement
data(Lucy)
attach(Lucy)
N <- dim(Lucy)[1]
n <- 400
sam <- S.SI(N,n)
# The information about the sample units is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
# The auxiliary information
Doma<-Domains(Level)
########### Poststratified common mean model
estima<-data.frame(Income, Employees, Taxes)
E.Beta(N, n, estima,Doma,ck=1,b0=FALSE)
########### Poststratified common ratio model
estima<-data.frame(Income, Employees)
x<-Doma*Taxes
E.Beta(N, n, estima,x,ck=1,b0=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.