Domains: Domains Indicator Matrix

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/Domains.r

Description

Creates a matrix of domain indicator variables for every single unit in the selected sample or in the entire population

Usage

1

Arguments

y

Vector of the domain of interest containing the membership of each unit to a specified category of the domain

Details

Each value of y represents the domain which a specified unit belongs

Value

The function returns a n\times p matrix, where n is the number of units in the selected sample and p is the number of categories of the domain of interest. The values of this matrix are zero, if the unit does not belongs to a specified category and one, otherwise.

Author(s)

Hugo Andres Gutierrez Rojas hagutierrezro@gmail.com

References

Sarndal, C-E. and Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas.

See Also

E.SI

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
############
## Example 1
############
# This domain contains only two categories: "yes" and "no"
x <- as.factor(c("yes","yes","yes","no","no","no","no","yes","yes"))
Domains(x)

############
## Example 2
############
# Uses the Lucy data to draw a random sample of units according 
# to a SI design
data(Lucy)
attach(Lucy)

N <- dim(Lucy)[1]
n <- 400
sam <- sample(N,n)
# The information about the units in the sample is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
# The variable SPAM is a domain of interest
Doma <- Domains(SPAM)
Doma
# HT estimation of the absolute domain size for every category in the domain
# of interest
E.SI(N,n,Doma)

############
## Example 3
############
# Following with Example 2... 
# The variables of interest are: Income, Employees and Taxes
# This function allows to estimate the population total of this variables for every 
# category in the domain of interest SPAM 
estima <- data.frame(Income, Employees, Taxes)
SPAM.no <- estima*Doma[,1]
SPAM.yes <- estima*Doma[,2]
E.SI(N,n,SPAM.no)
E.SI(N,n,SPAM.yes)

Example output

      no yes
 [1,]  0   1
 [2,]  0   1
 [3,]  0   1
 [4,]  1   0
 [5,]  1   0
 [6,]  1   0
 [7,]  1   0
 [8,]  0   1
 [9,]  0   1
The following objects are masked from Lucy:

    Employees, ID, Income, Level, SPAM, Taxes, Ubication, Zone

[1] "ID"        "Ubication" "Level"     "Zone"      "Income"    "Employees"
[7] "Taxes"     "SPAM"     
       no yes
  [1,]  1   0
  [2,]  0   1
  [3,]  0   1
  [4,]  0   1
  [5,]  0   1
  [6,]  0   1
  [7,]  0   1
  [8,]  1   0
  [9,]  0   1
 [10,]  0   1
 [11,]  0   1
 [12,]  1   0
 [13,]  1   0
 [14,]  1   0
 [15,]  0   1
 [16,]  0   1
 [17,]  0   1
 [18,]  0   1
 [19,]  0   1
 [20,]  0   1
 [21,]  1   0
 [22,]  0   1
 [23,]  0   1
 [24,]  1   0
 [25,]  0   1
 [26,]  0   1
 [27,]  0   1
 [28,]  1   0
 [29,]  0   1
 [30,]  0   1
 [31,]  1   0
 [32,]  1   0
 [33,]  1   0
 [34,]  0   1
 [35,]  0   1
 [36,]  0   1
 [37,]  1   0
 [38,]  1   0
 [39,]  1   0
 [40,]  1   0
 [41,]  0   1
 [42,]  0   1
 [43,]  1   0
 [44,]  1   0
 [45,]  1   0
 [46,]  1   0
 [47,]  1   0
 [48,]  1   0
 [49,]  1   0
 [50,]  1   0
 [51,]  0   1
 [52,]  1   0
 [53,]  0   1
 [54,]  1   0
 [55,]  0   1
 [56,]  1   0
 [57,]  1   0
 [58,]  1   0
 [59,]  1   0
 [60,]  1   0
 [61,]  1   0
 [62,]  0   1
 [63,]  0   1
 [64,]  0   1
 [65,]  1   0
 [66,]  0   1
 [67,]  0   1
 [68,]  0   1
 [69,]  1   0
 [70,]  1   0
 [71,]  0   1
 [72,]  0   1
 [73,]  0   1
 [74,]  0   1
 [75,]  0   1
 [76,]  1   0
 [77,]  1   0
 [78,]  1   0
 [79,]  1   0
 [80,]  0   1
 [81,]  1   0
 [82,]  0   1
 [83,]  1   0
 [84,]  1   0
 [85,]  0   1
 [86,]  1   0
 [87,]  1   0
 [88,]  1   0
 [89,]  1   0
 [90,]  0   1
 [91,]  1   0
 [92,]  1   0
 [93,]  1   0
 [94,]  1   0
 [95,]  1   0
 [96,]  1   0
 [97,]  0   1
 [98,]  1   0
 [99,]  0   1
[100,]  1   0
[101,]  1   0
[102,]  0   1
[103,]  1   0
[104,]  1   0
[105,]  0   1
[106,]  0   1
[107,]  1   0
[108,]  1   0
[109,]  1   0
[110,]  0   1
[111,]  0   1
[112,]  1   0
[113,]  0   1
[114,]  0   1
[115,]  0   1
[116,]  0   1
[117,]  0   1
[118,]  0   1
[119,]  1   0
[120,]  0   1
[121,]  1   0
[122,]  0   1
[123,]  1   0
[124,]  0   1
[125,]  0   1
[126,]  0   1
[127,]  1   0
[128,]  0   1
[129,]  0   1
[130,]  0   1
[131,]  0   1
[132,]  0   1
[133,]  0   1
[134,]  1   0
[135,]  1   0
[136,]  1   0
[137,]  1   0
[138,]  1   0
[139,]  1   0
[140,]  1   0
[141,]  0   1
[142,]  0   1
[143,]  0   1
[144,]  1   0
[145,]  0   1
[146,]  0   1
[147,]  0   1
[148,]  0   1
[149,]  0   1
[150,]  0   1
[151,]  1   0
[152,]  1   0
[153,]  0   1
[154,]  0   1
[155,]  1   0
[156,]  1   0
[157,]  0   1
[158,]  1   0
[159,]  0   1
[160,]  0   1
[161,]  1   0
[162,]  0   1
[163,]  0   1
[164,]  0   1
[165,]  0   1
[166,]  1   0
[167,]  1   0
[168,]  1   0
[169,]  0   1
[170,]  1   0
[171,]  0   1
[172,]  1   0
[173,]  1   0
[174,]  0   1
[175,]  0   1
[176,]  0   1
[177,]  0   1
[178,]  1   0
[179,]  0   1
[180,]  0   1
[181,]  0   1
[182,]  1   0
[183,]  0   1
[184,]  1   0
[185,]  1   0
[186,]  1   0
[187,]  0   1
[188,]  0   1
[189,]  1   0
[190,]  1   0
[191,]  0   1
[192,]  1   0
[193,]  0   1
[194,]  0   1
[195,]  0   1
[196,]  1   0
[197,]  1   0
[198,]  0   1
[199,]  0   1
[200,]  1   0
[201,]  0   1
[202,]  1   0
[203,]  0   1
[204,]  1   0
[205,]  0   1
[206,]  1   0
[207,]  0   1
[208,]  0   1
[209,]  1   0
[210,]  0   1
[211,]  1   0
[212,]  0   1
[213,]  0   1
[214,]  0   1
[215,]  1   0
[216,]  1   0
[217,]  1   0
[218,]  0   1
[219,]  0   1
[220,]  0   1
[221,]  1   0
[222,]  0   1
[223,]  1   0
[224,]  0   1
[225,]  1   0
[226,]  0   1
[227,]  0   1
[228,]  1   0
[229,]  1   0
[230,]  1   0
[231,]  1   0
[232,]  0   1
[233,]  1   0
[234,]  0   1
[235,]  0   1
[236,]  0   1
[237,]  1   0
[238,]  0   1
[239,]  0   1
[240,]  0   1
[241,]  1   0
[242,]  0   1
[243,]  0   1
[244,]  1   0
[245,]  1   0
[246,]  1   0
[247,]  0   1
[248,]  0   1
[249,]  1   0
[250,]  0   1
[251,]  1   0
[252,]  1   0
[253,]  1   0
[254,]  0   1
[255,]  1   0
[256,]  1   0
[257,]  1   0
[258,]  1   0
[259,]  0   1
[260,]  0   1
[261,]  0   1
[262,]  0   1
[263,]  1   0
[264,]  1   0
[265,]  1   0
[266,]  1   0
[267,]  1   0
[268,]  1   0
[269,]  1   0
[270,]  1   0
[271,]  0   1
[272,]  0   1
[273,]  0   1
[274,]  0   1
[275,]  1   0
[276,]  0   1
[277,]  0   1
[278,]  1   0
[279,]  0   1
[280,]  1   0
[281,]  0   1
[282,]  1   0
[283,]  0   1
[284,]  0   1
[285,]  0   1
[286,]  0   1
[287,]  0   1
[288,]  1   0
[289,]  0   1
[290,]  0   1
[291,]  0   1
[292,]  1   0
[293,]  0   1
[294,]  0   1
[295,]  0   1
[296,]  0   1
[297,]  1   0
[298,]  1   0
[299,]  1   0
[300,]  1   0
[301,]  0   1
[302,]  1   0
[303,]  0   1
[304,]  0   1
[305,]  0   1
[306,]  0   1
[307,]  0   1
[308,]  0   1
[309,]  1   0
[310,]  0   1
[311,]  1   0
[312,]  0   1
[313,]  0   1
[314,]  1   0
[315,]  0   1
[316,]  1   0
[317,]  0   1
[318,]  1   0
[319,]  0   1
[320,]  0   1
[321,]  1   0
[322,]  0   1
[323,]  0   1
[324,]  0   1
[325,]  0   1
[326,]  1   0
[327,]  0   1
[328,]  0   1
[329,]  1   0
[330,]  0   1
[331,]  0   1
[332,]  0   1
[333,]  0   1
[334,]  1   0
[335,]  0   1
[336,]  0   1
[337,]  1   0
[338,]  1   0
[339,]  0   1
[340,]  0   1
[341,]  0   1
[342,]  0   1
[343,]  0   1
[344,]  0   1
[345,]  1   0
[346,]  0   1
[347,]  1   0
[348,]  0   1
[349,]  0   1
[350,]  1   0
[351,]  0   1
[352,]  1   0
[353,]  1   0
[354,]  1   0
[355,]  0   1
[356,]  1   0
[357,]  0   1
[358,]  0   1
[359,]  0   1
[360,]  0   1
[361,]  0   1
[362,]  1   0
[363,]  0   1
[364,]  0   1
[365,]  1   0
[366,]  1   0
[367,]  1   0
[368,]  0   1
[369,]  0   1
[370,]  0   1
[371,]  0   1
[372,]  0   1
[373,]  0   1
[374,]  1   0
[375,]  0   1
[376,]  0   1
[377,]  0   1
[378,]  0   1
[379,]  1   0
[380,]  0   1
[381,]  0   1
[382,]  1   0
[383,]  0   1
[384,]  0   1
[385,]  0   1
[386,]  1   0
[387,]  0   1
[388,]  0   1
[389,]  0   1
[390,]  0   1
[391,]  0   1
[392,]  0   1
[393,]  0   1
[394,]  0   1
[395,]  0   1
[396,]  0   1
[397,]  1   0
[398,]  0   1
[399,]  1   0
[400,]  0   1
                  N         no         yes
Estimation     2396 1024.29000 1371.710000
Standard Error    0   54.16179   54.161793
CVE               0    5.28774    3.948487
DEFF            NaN    1.00000    1.000000
                  N       Income   Employees        Taxes
Estimation     2396 4.310823e+05 60792.51000 11114.445000
Standard Error    0 2.861642e+04  3847.71602  1090.885873
CVE               0 6.638273e+00     6.32926     9.815028
DEFF            NaN 1.000000e+00     1.00000     1.000000
                  N       Income    Employees        Taxes
Estimation     2396 6.210672e+05 88687.940000 17619.585000
Standard Error    0 3.276007e+04  4470.242148  1632.874048
CVE               0 5.274802e+00     5.040417     9.267381
DEFF            NaN 1.000000e+00     1.000000     1.000000

TeachingSampling documentation built on April 22, 2020, 1:05 a.m.