Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the Hansen-Hurwitz Estimator estimator of the population total for several variables of interest
1 | HH(y, pk)
|
y |
Vector, matrix or data frame containing the recollected information of the variables of interest for every unit in the selected sample |
pk |
A vector containing selection probabilities for each unit in the selected sample |
The Hansen-Hurwitz estimator is given by
∑_{i=1}^m\frac{y_i}{p_i}
where y_i is the value of the variables of interest for the ith unit, and p_i is its corresponding selection probability. This estimator is restricted to with replacement sampling designs.
The function returns a vector of total population estimates for each variable of interest, its estimated standard error and its estimated coefficient of variation.
Hugo Andres Gutierrez Rojas hagutierrezro@gmail.com
Sarndal, C-E. and Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros.
Editorial Universidad Santo Tomas.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | ############
## Example 1
############
# Vector U contains the label of a population of size N=5
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
# Vectors y1 and y2 give the values of the variables of interest
y1<-c(32, 34, 46, 89, 35)
y2<-c(1,1,1,0,0)
y3<-cbind(y1,y2)
# The population size is N=5
N <- length(U)
# The sample size is m=2
m <- 2
# pk is the probability of selection of every single unit
pk <- c(0.35, 0.225, 0.175, 0.125, 0.125)
# Selection of a random sample with replacement
sam <- sample(5,2, replace=TRUE, prob=pk)
# The selected sample is
U[sam]
# The values of the variables of interest for the units in the sample
y1[sam]
y2[sam]
y3[sam,]
# The Hansen-Hurwitz estimator
HH(y1[sam],pk[sam])
HH(y2[sam],pk[sam])
HH(y3[sam,],pk[sam])
############
## Example 2
############
# Uses the Lucy data to draw a simple random sample with replacement
data(Lucy)
attach(Lucy)
N <- dim(Lucy)[1]
m <- 400
sam <- sample(N,m,replace=TRUE)
# The vector of selection probabilities of units in the sample
pk <- rep(1/N,m)
# The information about the units in the sample is stored in an object called data
data <- Lucy[sam,]
attach(data)
names(data)
# The variables of interest are: Income, Employees and Taxes
# This information is stored in a data frame called estima
estima <- data.frame(Income, Employees, Taxes)
HH(estima, pk)
################################################################
## Example 3 HH is unbiased for with replacement sampling designs
################################################################
# Vector U contains the label of a population of size N=5
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
# Vector y1 and y2 are the values of the variables of interest
y<-c(32, 34, 46, 89, 35)
# The population size is N=5
N <- length(U)
# The sample size is m=2
m <- 2
# pk is the probability of selection of every single unit
pk <- c(0.35, 0.225, 0.175, 0.125, 0.125)
# p is the probability of selection of every possible sample
p <- p.WR(N,m,pk)
p
sum(p)
# The sample membership matrix for random size without replacement sampling designs
Ind <- nk(N,m)
Ind
# The support with the values of the elements
Qy <- SupportWR(N,m, ID=y)
Qy
# The support with the values of the elements
Qp <- SupportWR(N,m, ID=pk)
Qp
# The HT estimates for every single sample in the support
HH1 <- HH(Qy[1,], Qp[1,])[1,]
HH2 <- HH(Qy[2,], Qp[2,])[1,]
HH3 <- HH(Qy[3,], Qp[3,])[1,]
HH4 <- HH(Qy[4,], Qp[4,])[1,]
HH5 <- HH(Qy[5,], Qp[5,])[1,]
HH6 <- HH(Qy[6,], Qp[6,])[1,]
HH7 <- HH(Qy[7,], Qp[7,])[1,]
HH8 <- HH(Qy[8,], Qp[8,])[1,]
HH9 <- HH(Qy[9,], Qp[9,])[1,]
HH10 <- HH(Qy[10,], Qp[10,])[1,]
HH11 <- HH(Qy[11,], Qp[11,])[1,]
HH12 <- HH(Qy[12,], Qp[12,])[1,]
HH13 <- HH(Qy[13,], Qp[13,])[1,]
HH14 <- HH(Qy[14,], Qp[14,])[1,]
HH15 <- HH(Qy[15,], Qp[15,])[1,]
# The HT estimates arranged in a vector
Est <- c(HH1, HH2, HH3, HH4, HH5, HH6, HH7, HH8, HH9, HH10, HH11, HH12, HH13,
HH14, HH15)
Est
# The HT is actually desgn-unbiased
data.frame(Ind, Est, p)
sum(Est*p)
sum(y)
|
[1] "Yves" "Ken"
[1] 32 34
[1] 1 1
y1 y2
[1,] 32 1
[2,] 34 1
y
Estimation 121.26984
Standard Error 29.84127
CVE 24.60733
y
Estimation 3.6507937
Standard Error 0.7936508
CVE 21.7391304
y1 y2
Estimation 121.26984 3.6507937
Standard Error 29.84127 0.7936508
CVE 24.60733 21.7391304
The following objects are masked from Lucy:
Employees, ID, Income, Level, SPAM, Taxes, Ubication, Zone
[1] "ID" "Ubication" "Level" "Zone" "Income" "Employees"
[7] "Taxes" "SPAM"
Income Employees Taxes
Estimation 1.000504e+06 1.509720e+05 26403.920000
Standard Error 3.029855e+04 3.920522e+03 1870.872910
CVE 3.028329e+00 2.596855e+00 7.085588
[1] 0.122500 0.157500 0.122500 0.087500 0.087500 0.050625 0.078750 0.056250
[9] 0.056250 0.030625 0.043750 0.043750 0.015625 0.031250 0.015625
[1] 1
[,1] [,2] [,3] [,4] [,5]
[1,] 2 0 0 0 0
[2,] 1 1 0 0 0
[3,] 1 0 1 0 0
[4,] 1 0 0 1 0
[5,] 1 0 0 0 1
[6,] 0 2 0 0 0
[7,] 0 1 1 0 0
[8,] 0 1 0 1 0
[9,] 0 1 0 0 1
[10,] 0 0 2 0 0
[11,] 0 0 1 1 0
[12,] 0 0 1 0 1
[13,] 0 0 0 2 0
[14,] 0 0 0 1 1
[15,] 0 0 0 0 2
Warning message:
In if (ID == FALSE) { :
the condition has length > 1 and only the first element will be used
[,1] [,2]
[1,] 32 32
[2,] 32 34
[3,] 32 46
[4,] 32 89
[5,] 32 35
[6,] 34 34
[7,] 34 46
[8,] 34 89
[9,] 34 35
[10,] 46 46
[11,] 46 89
[12,] 46 35
[13,] 89 89
[14,] 89 35
[15,] 35 35
Warning message:
In if (ID == FALSE) { :
the condition has length > 1 and only the first element will be used
[,1] [,2]
[1,] 0.350 0.350
[2,] 0.350 0.225
[3,] 0.350 0.175
[4,] 0.350 0.125
[5,] 0.350 0.125
[6,] 0.225 0.225
[7,] 0.225 0.175
[8,] 0.225 0.125
[9,] 0.225 0.125
[10,] 0.175 0.175
[11,] 0.175 0.125
[12,] 0.175 0.125
[13,] 0.125 0.125
[14,] 0.125 0.125
[15,] 0.125 0.125
[1] 91.42857 121.26984 177.14286 401.71429 185.71429 151.11111 206.98413
[8] 431.55556 215.55556 262.85714 487.42857 271.42857 712.00000 496.00000
[15] 280.00000
X1 X2 X3 X4 X5 Est p
1 2 0 0 0 0 91.42857 0.122500
2 1 1 0 0 0 121.26984 0.157500
3 1 0 1 0 0 177.14286 0.122500
4 1 0 0 1 0 401.71429 0.087500
5 1 0 0 0 1 185.71429 0.087500
6 0 2 0 0 0 151.11111 0.050625
7 0 1 1 0 0 206.98413 0.078750
8 0 1 0 1 0 431.55556 0.056250
9 0 1 0 0 1 215.55556 0.056250
10 0 0 2 0 0 262.85714 0.030625
11 0 0 1 1 0 487.42857 0.043750
12 0 0 1 0 1 271.42857 0.043750
13 0 0 0 2 0 712.00000 0.015625
14 0 0 0 1 1 496.00000 0.031250
15 0 0 0 0 2 280.00000 0.015625
[1] 236
[1] 236
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.