Description Usage Arguments Details Value Author(s) References See Also Examples
Creates a matrix containing every possible sample under fixed sample size with replacement designs
1 |
N |
Population size |
m |
Sample size |
ID |
By default FALSE, a vector of values (numeric or string) identifying each unit in the population |
A support is defined as the set of samples such that, for any sample in the support, all the permutations of the coordinates of the sample are also in the support
The function returns a matrix of binom(N+m-1)(m) rows and m columns. Each row of this matrix corresponds to a possible sample
Hugo Andres Gutierrez Rojas hagutierrezro@gmail.com
Ortiz, J. E. (2009), Simulacion y metodos estadisticos. Editorial Universidad Santo Tomas.
Tille, Y. (2006), Sampling Algorithms. Springer.
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros.
Editorial Universidad Santo Tomas.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Vector U contains the label of a population
U <- c("Yves", "Ken", "Erik", "Sharon", "Leslie")
N <- length(U)
m <- 2
# The support for fixed size without replacement sampling designs
# Under this context, there are ten (10) possibles samples
SupportWR(N, m)
# The same support, but labeled
SupportWR(N, m, ID=U)
# y is the variable of interest
y<-c(32,34,46,89,35)
# The following output is very useful when checking
# the design-unbiasedness of an estimator
SupportWR(N, m, ID=y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.