Nothing
#' Carry out log rank test
#' @description
#' Compute log rank test statistic on an endpoint.
#' @param formula An object of class \code{formula} that can be used with
#' \code{survival::coxph}. Must consist \code{arm} and endpoint in \code{data}.
#' No covariate is allowed. Stratification variables are supported and can be
#' added using \code{strata(...)}.
#' @param placebo character. String of placebo in \code{data$arm}.
#' @param data data frame. Usually it is a locked data.
#' @param alternative a character string specifying the alternative hypothesis,
#' must be one of \code{"greater"} or \code{"less"}. No default value.
#' \code{"greater"} means superiority of treatment over placebo is established
#' by an hazard ratio greater than 1.
#' @param tidy logical. \code{FALSE} if more information are returned.
#' Default \code{TRUE}.
#' @param ... subset condition that is compatible with \code{dplyr::filter}.
#' \code{survival::coxph} with \code{ties = "exact"} will be fitted on this
#' subset only. This argument could be useful to create a subset of data for
#' analysis when a trial consists of more than two arms. By default it is not
#' specified, all data will be used to fit the model. More than one conditions
#' can be specified in \code{...}, e.g.,
#' \code{fitLogrank(formula, data, arm \%in\% c('pbo', 'low dose'), pfs > 0.5)},
#' which is equivalent to
#' \code{fitLogrank(formula, data, arm \%in\% c('pbo', 'low dose') & pfs > 0.5)}.
#'
#' @returns a data frame with three columns:
#' \describe{
#' \item{\code{arm}}{name of the treatment arm. }
#' \item{\code{placebo}}{name of the placebo arm. }
#' \item{\code{p}}{one-sided p-value for log-rank test (treated vs placebo). }
#' \item{\code{info}}{the number of events of the endpoint in the subset. }
#' \item{\code{z}}{the z statistics of log hazard ratios. }
#' }
#'
#' @importFrom stats terms
#'
#' @export
#'
fitLogrank <- function(formula, placebo, data, alternative, ..., tidy = TRUE) {
if(!inherits(formula, 'formula')){
stop('formula must be a formula object with "arm" indicating the column arm in data. ')
}
is_valid_arm_formula <- function(formula, arm_var = "arm") {
trms <- terms(formula, specials = "strata")
labels <- attr(trms, "term.labels")
strata_vars <- untangle.specials(trms, "strata", order = TRUE)$vars
non_strata_vars <- setdiff(labels, strata_vars)
length(non_strata_vars) == 1 && non_strata_vars == arm_var
}
if(!is_valid_arm_formula(formula, 'arm')){
stop('formula should be in the format of Surv(time, event) ~ arm or Surv(time, event) ~ arm + strata(...) + ... + strata(...). ')
}
if(!is.character(placebo) || length(placebo) != 1){
stop("placebo must be a single character string")
}
if(!is.data.frame(data)){
stop("data must be a data frame")
}
alternative <- match.arg(alternative, choices = c('greater', 'less'))
vars_in_formula <- all.vars(formula)
missing_vars <- setdiff(vars_in_formula, names(data))
if(length(missing_vars) > 0){
stop('The following variable(s) used in formula are missing from data: \n',
paste0(missing_vars, collapse = ', '))
}
if(!'arm' %in% vars_in_formula){
stop('formula must include main effect term for arm. ')
}
# Prepare the data based on condition in ...
filtered_data <- if(...length() == 0){
data
}else{
tryCatch({
data %>% dplyr::filter(...)
},
error = function(e){
stop('Error in filtering data for logrank test. ',
'Please check condition in ..., ',
'which should be compatible with dplyr::filter. ')
})
}
# Check if any data remains after filtering
if (nrow(filtered_data) == 0) {
stop("No data remaining after applying subset condition. ")
}
treatment_arms <- setdiff(unique(filtered_data$arm), placebo) %>% sort()
ret <- NULL
for(trt_arm in treatment_arms){
sub_data <- filtered_data %>% dplyr::filter(.data$arm %in% c(placebo, trt_arm))
# Ensure arm is a factor with placebo and treatment
sub_data$arm <- factor(sub_data$arm, levels = c(placebo, trt_arm))
fit_cox <- fitCoxph(formula, placebo, sub_data, alternative,
scale = 'log hazard ratio', tidy = tidy) ## ... is not needed
# Fit the Cox model
lr <- tryCatch({
coxph(formula, data = sub_data, ties = 'exact')
}, error = function(e){
stop('coxph model fitting failed in fitLogrank: ', e$message)
})
# calculate log rank statistic
z <- sqrt(summary(lr)$sctest['test']) * ifelse(fit_cox$z > 0, 1, -1)
p <- ifelse(alternative == 'greater', 1 - pnorm(z), pnorm(z))
info <- fit_cox$info
res <- data.frame(arm = trt_arm, placebo = placebo,
p = p, info = info, z = z
)
if(!tidy){
res$info_pbo <- fit_cox$info_pbo
res$info_trt <- fit_cox$info_trt
res$n_pbo <- fit_cox$n_pbo
res$n_trt <- fit_cox$n_trt
}
ret <- rbind(ret, res)
}
rownames(ret) <- NULL
class(ret) <- c('fit_logrank', class(ret))
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.