Nothing
DB.IDX <- function(x, kmax, kmin=2,
method = 'kmeans',
indexlist = 'all', #c(,"all","DB","DBs")
p = 2, q = 2,
nstart = 100){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if(kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!is.numeric(kmin))
stop("Argument 'kmin' must be numeric")
if(kmin <=1)
warning("The minimum number of clusters for consideration should be more than 1",immediate. = TRUE)
if(!any(method == c("kmeans","hclust_complete","hclust_average","hclust_single")))
stop("Argument 'method' should be one of 'kmeans', 'hclust_complete', 'hclust_average', 'hclust_single'")
if(!any(indexlist %in% c("all","DB","DBs")))
stop("Argument 'indexlist' should be 'all', 'DB', 'DBs'")
if(!is.numeric(p))
stop("Argument 'p' must be numeric")
if(!is.numeric(q))
stop("Argument 'q' must be numeric")
if(method == "kmeans"){
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
}
if(startsWith(method,"hclust_")){
H.model = hclust(dist(x),method = sub("hclust_", "", method))
}
dm = dim(x)
db = vector()
dbs = vector()
for(k in kmin:kmax){
xnew = matrix(0,dm[1],dm[2])
centroid = matrix(0,k,dm[2])
if(method == "kmeans"){
K.model = kmeans(x,k,nstart =nstart)
cluss = K.model$cluster
centroid = K.model$centers
xnew = centroid[cluss,]
} else if(startsWith(method,"hclust_")){
cluss = cutree(H.model,k)
for (j in 1:k){
if (is.null(nrow(x[cluss==j,])) | sum(nrow(x[cluss==j,]))==1){
centroid[j,] = as.numeric(x[cluss==j,])
} else {
centroid[j,] = colMeans(x[cluss==j,])
}
}
xnew = centroid[cluss,]
} # End check algorithm
if(!all(seq(k) %in% unique(cluss)))
warning("Some clusters are empty.")
# Si,q
S = vector() #length = k
sizecluss = as.vector(table(cluss))
for(i in 1:k){
C = sizecluss[i]
if(C>1){
cenI = xnew[cluss ==i,]
S[i] = (sum(sqrt(rowSums((x[cluss==i,]-cenI)^2))^q)/C)^(1/q)
}else{
S[i] = 0
}
}
m = as.matrix(dist(centroid,method="minkowski",p=p))
R = matrix(0,k,k)
r = vector()
rs = vector()
wcdd = vector()
for (i in 1:k){
C = sizecluss[i]
r[i] = max((S[i] + S[-i])/m[i,][m[i,]!=0])
rs[i] = max(S[i] + S[-i])/min(m[i,][m[i,]!=0])
# for SF index
wcdd[i] = sum(dist(rbind(centroid[i,],x[cluss==i,]))[1:C])/C
}
db[k-kmin+1] = mean(r)
dbs[k-kmin+1] = mean(rs)
}
DB = data.frame(cbind("k"=kmin:kmax,"DB"=db))
DBs = data.frame(cbind("k"=kmin:kmax,"DBs"=dbs))
DB.list = list("DB" = DB, "DBs" = DBs)
if (sum(indexlist == "all")==1){
return(DB.list)
} else {
return(DB.list[indexlist])
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.