View source: R/blockwiseModulesC.R

lowerTri2matrix | R Documentation |

Assuming the input vector contains a vectorized form of the distance representation of a symmetric matrix, this function creates the corresponding matrix. This is useful when re-forming symmetric matrices that have been vectorized to save storage space.

lowerTri2matrix(x, diag = 1)

`x` |
a numeric vector |

`diag` |
value to be put on the diagonal. Recycled if necessary. |

The function assumes that `x`

contains the vectorized form of the distance representation of a
symmetric matrix. In particular, `x`

must have a length that can be expressed as n*(n-1)/2, with n an
integer. The result of the function is then an n times n matrix.

A symmetric matrix whose lower triangle is given by `x`

.

Peter Langfelder

# Create a symmetric matrix m = matrix(c(1:16), 4,4) mat = (m + t(m)); diag(mat) = 0; # Print the matrix mat # Take the lower triangle and vectorize it (in two ways) x1 = mat[lower.tri(mat)] x2 = as.vector(as.dist(mat)) all.equal(x1, x2) # The vectors are equal # Turn the vectors back into matrices new.mat = lowerTri2matrix(x1, diag = 0); # Did we get back the same matrix? all.equal(mat, new.mat)

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.