Nothing
iptw.adjusted.win.stat<-function(df,iptw.weight,n_total,arm.name = c(1,2),id_trt,id_con,
ep_type,n_ep,priority = c(1,2),tau = c(0,0),
np_direction = "larger", win.strategy = NULL,
alpha = 0.05,digit = 5,
pvalue = c("one-sided","two-sided"),
stratum.weight = c("unstratified","MH-type","wt.stratum1","wt.stratum2","equal"),
summary.print = TRUE, ...){
#### obtain the number of treatment and control and the individual weight in each group
arm = df$arm
weight.trt = iptw.weight[arm==arm.name[1]]
weight.con = iptw.weight[arm==arm.name[2]]
#############################################################################################
#### The options for general data set: obtain the estimate and variance estimate for
#### win ratio, net benefit and win odds from Dong et.al's method.
#############################################################################################
#### pair the individuals in the treatment and control group
trt = data.frame(id_trt,df[df$arm==arm.name[1],-1])
colnames(trt) = c("pid_trt","stratum",paste0(colnames(df)[-c(1,2)],"_trt"))
con = data.frame(id_con,df[df$arm==arm.name[2],-1])
colnames(con) = c("pid_con","stratum",paste0(colnames(df)[-c(1,2)],"_con"))
trt_con = merge(trt,con,by="stratum")
#############################################################################################
#### Determine winners/losers/ties
#############################################################################################
if(is.null(win.strategy)){
win_status = win.strategy.default(trt_con = trt_con, priority = priority, tau = tau,
np_direction = np_direction)
}else{
# user defined function
win_status = win.strategy(trt_con = trt_con, priority = priority, tau=tau,
np_direction = np_direction, ...)
}
#############################################################################################
#### Stratum-specific win ratios: estimated WR and the variance
#############################################################################################
#### Obtain kernel function K and L
weighted_win_status = iptw.adjusted.KL(win_status = win_status, trt = trt,con = con, trt_con = trt_con,
priority = priority, n_ep = n_ep, ep_type = ep_type,
weight.trt = weight.trt, weight.con = weight.con)
KL = weighted_win_status$KL
#### number of patients per stratum
df_trt = data.frame(stratum = trt$stratum, wt = weight.trt)
N_trt = aggregate(x = list("wt" = df_trt$wt), by = list("stratum" = df_trt$stratum), FUN = sum)[,2]
df_con = data.frame(stratum = con$stratum, wt = weight.con)
N_con = aggregate(x = list("wt" = df_con$wt), by = list("stratum" = df_con$stratum), FUN = sum)[,2]
N_trt_con = cbind(as.numeric(levels(factor(trt_con$stratum))), N_trt, N_con )
colnames(N_trt_con)=c('stratum', 'N2_trt', 'N2_con')
#### Estimate WR
KL.summary = apply(cbind(KL$K,KL$L), 2, func<-function(x){
temp = aggregate(x, by=list(Category=trt_con[[1]]), FUN=sum)
as.matrix(temp)[,2]
})
KL.summary = matrix(KL.summary,ncol = 2)
n_str = nrow(KL.summary)
for(stri in 1:n_str){
sum_KL_str = sum(KL.summary[stri,])/(N_trt[stri]*N_con[stri])
if(sum_KL_str>=1){
KL$K[which(KL$stratum==stri)] = KL$K[which(KL$stratum==stri)]/sum_KL_str
KL$L[which(KL$stratum==stri)] = KL$L[which(KL$stratum==stri)]/sum_KL_str
KL.summary[stri,] = KL.summary[stri,]/sum_KL_str
}
}
#### Obtain the number and the proportion of wins for each endpoint per stratum
summary_ep = apply(weighted_win_status$status_KL, 2, func<-function(x){
temp1 = aggregate(x, by=list(trt_con$stratum), FUN = sum)
temp2 = aggregate(x, by=list(trt_con$stratum), FUN = sum)
temp_res = cbind(temp1,temp2[,2]/(N_trt*N_con)); colnames(temp_res) = c("Stratum", "Count", "Proportion")
return(temp_res)
})
#### number of wins per stratum
win_trt = KL.summary[,1]
win_con = KL.summary[,2]
#### stratum-specific win ratio, net benefit and win odds
P_trt = win_trt/(N_trt*N_con)
P_con = win_con/(N_trt*N_con)
WR_stratum = win_trt/win_con
NB_stratum = P_trt - P_con
WO_stratum = (P_trt + 0.5*(1-P_trt-P_con))/(P_con + 0.5*(1-P_trt-P_con))
#############################################################################################
#### variances and covariances per stratum if there are any stratum.
#############################################################################################
#### calculate theta_K0/theta_L0
theta_KL_0 = (win_trt + win_con)/(2*N_trt*N_con)
theta_KL_0 = cbind(as.numeric(levels(factor(trt_con$stratum))), theta_KL_0)
colnames(theta_KL_0)=c('stratum', 'theta_KL_0')
sum_k_trt = aggregate(KL$K, by=list(trt_con$stratum, trt_con$pid_trt), FUN = sum)
sum_k_con = aggregate(KL$K, by=list(trt_con$stratum, trt_con$pid_con), FUN = sum)
sum_L_trt = aggregate(KL$L, by=list(trt_con$stratum, trt_con$pid_trt), FUN = sum)
sum_L_con = aggregate(KL$L, by=list(trt_con$stratum, trt_con$pid_con), FUN = sum)
names(sum_k_trt) = c('stratum', 'pid_trt', 'sum_k_trt')
names(sum_k_con) = c('stratum', 'pid_con', 'sum_k_con')
names(sum_L_trt) = c('stratum', 'pid_trt', 'sum_l_trt')
names(sum_L_con) = c('stratum', 'pid_con', 'sum_l_con')
KL = merge(KL, sum_k_trt, by=c('stratum', 'pid_trt'))
KL = merge(KL, sum_k_con, by=c('stratum', 'pid_con'))
KL = merge(KL, sum_L_trt, by=c('stratum', 'pid_trt'))
KL = merge(KL, sum_L_con, by=c('stratum', 'pid_con'))
KL = merge(KL, theta_KL_0, by=c('stratum'))
KL = merge(KL, N_trt_con, by=c('stratum'))
sig2_trt_1 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_k_trt - KL$K - (KL$N2_con - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_con-1)
sig2_trt_2 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_k_con - KL$K - (KL$N2_trt - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_trt-1)
sig2_con_1 = N_trt*N_con*aggregate( (KL$L-KL$theta_KL_0)*(KL$sum_l_con - KL$L - (KL$N2_trt - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_trt-1)
sig2_con_2 = N_trt*N_con*aggregate( (KL$L-KL$theta_KL_0)*(KL$sum_l_trt - KL$L - (KL$N2_con - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_con-1)
sig_trt_con_1 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_l_trt - KL$L - (KL$N2_con - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_con-1)
sig_trt_con_2 = N_trt*N_con*aggregate( (KL$K-KL$theta_KL_0)*(KL$sum_l_con - KL$L - (KL$N2_trt - 1)*KL$theta_KL_0 ),
by=list(KL$stratum), FUN = sum)[,2] / (N_trt-1)
sig2_trt = sig2_trt_1/N_trt + sig2_trt_2/N_con
sig2_con = sig2_con_1/N_con + sig2_con_2/N_trt
sig_trt_con = sig_trt_con_1/N_trt + sig_trt_con_2/N_con
theta_tc = (win_trt + win_con)/2
gam = theta_tc + 0.5*(N_trt*N_con-theta_tc-theta_tc)
#############################################################################################
#### Stratified win ratio
#############################################################################################
#### Total sample size and total event per stratum
N = N_trt + N_con
ind.tte = which(ep_type == "tte")
n_tte = length(ind.tte)
if(n_tte > 0){
ind.trt = which(colnames(trt)=="Delta_1_trt")
event_trt = apply(as.matrix(trt[,c(ind.trt:(ind.trt+n_ep-1))[ind.tte]],ncol = n_tte), 1, function(x) max(x)>0)
N_event_trt = tapply(event_trt,trt$stratum,sum)
ind.con = which(colnames(con)=="Delta_1_con")
event_con = apply(as.matrix(con[,c(ind.con:(ind.con+n_ep-1))[ind.tte]],ncol = n_tte), 1, function(x) max(x)>0)
N_event_con = tapply(event_con,con$stratum,sum)
N_event = N_event_trt + N_event_con
}else{
N_event = N
}
#### Stratified win statistics
w_stratum = switch(stratum.weight,
"unstratified" = 1,
"equal" = rep(1/length(N),length(N)),
"MH-type" = (1/N)/sum(1/N),
"wt.stratum1" = N/sum(N),
"wt.stratum2" = N_event/sum(N_event)
)
if(stratum.weight%in%c("unstratified","equal","MH-type")){
stratified_N = sum((N_trt*N_con)*w_stratum)
}
stratified_WR = switch(stratum.weight,
"unstratified" = sum(win_trt*w_stratum/stratified_N)/sum(win_con*w_stratum/stratified_N),
"equal" = sum(win_trt*w_stratum/stratified_N)/sum(win_con*w_stratum/stratified_N),
"MH-type" = sum(win_trt*w_stratum/stratified_N)/sum(win_con*w_stratum/stratified_N),
"wt.stratum1" = sum(w_stratum*WR_stratum),
"wt.stratum2" = sum(w_stratum*WR_stratum)
)
stratified_NB = switch(stratum.weight,
"unstratified" = sum(win_trt*w_stratum/stratified_N)-sum(win_con*w_stratum/stratified_N),
"equal" = sum(win_trt*w_stratum/stratified_N)-sum(win_con*w_stratum/stratified_N),
"MH-type" = sum(win_trt*w_stratum/stratified_N)-sum(win_con*w_stratum/stratified_N),
"wt.stratum1" = sum(w_stratum*NB_stratum),
"wt.stratum2" = sum(w_stratum*NB_stratum)
)
stratified_WO = switch(stratum.weight,
"unstratified" = sum((sum(win_trt*w_stratum/stratified_N) +
0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N))))/
sum((sum(win_con*w_stratum/stratified_N) + 0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N)))),
"equal" = sum((sum(win_trt*w_stratum/stratified_N) +
0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N))))/
sum((sum(win_con*w_stratum/stratified_N) + 0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N)))),
"MH-type" = sum((sum(win_trt*w_stratum/stratified_N) +
0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N))))/
sum((sum(win_con*w_stratum/stratified_N) + 0.5*(1-sum(win_trt*w_stratum/stratified_N)-
sum(win_con*w_stratum/stratified_N)))),
"wt.stratum1" = sum(w_stratum*WO_stratum),
"wt.stratum2" = sum(w_stratum*WO_stratum)
)
#### Variance, CI and p-value
if(stratum.weight%in%c("wt.stratum1","wt.stratum2")){
#### asymptotic variance
sig2_wr = (sig2_trt + sig2_con - 2*sig_trt_con)/((theta_tc)^2)
sig2_wo = (sig2_trt + sig2_con - 2*sig_trt_con)*(((N_trt*N_con)/(2*(gam^2)))^2)
sig2_nb = (sig2_trt + sig2_con - 2*sig_trt_con)/((N_trt*N_con)^2)
stratified_sig2_log_wr = sum(((w_stratum)^2)*sig2_wr)/(stratified_WR^2)
stratified_sig2_log_wo = sum(((w_stratum)^2)*sig2_wo)/(stratified_WO^2)
stratified_sig2_nb = sum(((w_stratum)^2)*sig2_nb)
}else{
#### asymptotic variance
stratified_sig2_log_wr = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))/
((sum(w_stratum*theta_tc))^2)
stratified_sig2_log_wo = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))*
((0.5/sum(w_stratum*gam)+0.5/sum(w_stratum*(N_trt*N_con-gam)))^2)
stratified_sig2_nb = sum(((w_stratum)^2)*(sig2_trt + sig2_con - 2*sig_trt_con))/
((sum(w_stratum*N_trt*N_con))^2)
}
#### z-statistic and p-value
zstat_WR = log(stratified_WR)/sqrt(stratified_sig2_log_wr)
pvalue_WR = switch(pvalue,
"one-sided" = 1 - pnorm(zstat_WR,
mean = 0, sd = 1),
"two-sided" = 2 - 2*pnorm(abs(zstat_WR),
mean = 0, sd = 1))
zstat_WO = log(stratified_WO)/sqrt(stratified_sig2_log_wo)
pvalue_WO = switch(pvalue,
"one-sided" = 1 - pnorm(zstat_WO,
mean = 0, sd = 1),
"two-sided" = 2 - 2*pnorm(abs(zstat_WO),
mean = 0, sd = 1))
zstat_NB = stratified_NB/sqrt(stratified_sig2_nb)
pvalue_NB = switch(pvalue,
"one-sided" = 1 - pnorm(zstat_NB,
mean = 0, sd = 1),
"two-sided" = 2 - 2*pnorm(abs(zstat_NB),
mean = 0, sd = 1))
#### 100*(1-alpha)% CI
stratified_WR_L = exp(log(stratified_WR) - qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wr))
stratified_WR_U = exp(log(stratified_WR) + qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wr))
stratified_WO_L = exp(log(stratified_WO) - qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wo))
stratified_WO_U = exp(log(stratified_WO) + qnorm(1-alpha/2)*sqrt(stratified_sig2_log_wo))
stratified_NB_L = stratified_NB - qnorm(1-alpha/2)*sqrt(stratified_sig2_nb)
stratified_NB_U = stratified_NB + qnorm(1-alpha/2)*sqrt(stratified_sig2_nb)
Win_statistic = list(Win_Ratio = c(WR = stratified_WR,
WR_L = stratified_WR_L,
WR_U = stratified_WR_U),
Net_Benefit = c(NB = stratified_NB,
NB_L = stratified_NB_L,
NB_U = stratified_NB_U),
Win_Odds = c(WO = stratified_WO,
WO_L = stratified_WO_L,
WO_U = stratified_WO_U))
if(summary.print){
#############################################################################################
#### Output the result
#############################################################################################
cat("\n Win Ratio :", formatC(stratified_WR,digits = digit,format = "f"),"\n",
"\n", pvalue, "p-value is: ",
ifelse(pvalue_WR>10^(-digit),formatC(pvalue_WR,digits = digit,format = "f"),paste0("< ",10^(-digit))),
"\n",
"Lower limit of", 100*(1-alpha), "% CI of the win ratio: ", formatC(stratified_WR_L,digits = digit, format = "f"), "\n",
"Upper limit of", 100*(1-alpha), "% CI of the win ratio: ", formatC(stratified_WR_U,digits = digit, format = "f"), "\n",
"\n",
"\n Net Benefit :", formatC(stratified_NB,digits = digit,format = "f"), "\n",
"\n", pvalue, "p-value is: ",
ifelse(pvalue_NB>10^(-digit),formatC(pvalue_NB,digits = digit,format = "f"),paste0("< ",10^(-digit))),
"\n",
"Lower limit of", 100*(1-alpha), "% CI of the net benefit: ", formatC(stratified_NB_L,digits = digit, format = "f"), "\n",
"Upper limit of", 100*(1-alpha), "% CI of the net benefit: ", formatC(stratified_NB_U,digits = digit, format = "f"), "\n",
"\n",
"\n Win Odds :", formatC(stratified_WO,digits = digit,format = "f"), "\n",
"\n", pvalue, "p-value is: ",
ifelse(pvalue_WO>10^(-digit),formatC(pvalue_WO,digits = digit,format = "f"),paste0("< ",10^(-digit))),
"\n",
"Lower limit of", 100*(1-alpha), "% CI of the win odds: ", formatC(stratified_WO_L,digits = digit, format = "f"), "\n",
"Upper limit of", 100*(1-alpha), "% CI of the win odds: ", formatC(stratified_WO_U,digits = digit, format = "f"), "\n",
"\n")
return(invisible(NULL))
}else{
Win_prop = data.frame(stratum = as.numeric(levels(factor(trt_con$stratum))),P_trt=P_trt,P_con=P_con)
z_statistic = data.frame(cbind(zstat_WR,zstat_NB,zstat_WO)); rownames(z_statistic) = "value"
p_value = data.frame(cbind(pvalue_WR,pvalue_NB,pvalue_WO)); rownames(p_value) = "value"
res = list(Win_prop = Win_prop,
Win_statistic = Win_statistic,
z_statistic = z_statistic,
p_value = p_value,
summary_ep = summary_ep)
return(res)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.