Nothing
#' @title Extract a signal in between tracked boundaries in a wavelet scalogram
#'
#' @description Interactively select points in a wavelet scalogram to trace the upper and
#' lower period of an cycle. The \code{\link{dynamic_extraction}} function plots a wavelet scalogram in which points peaks can selected
#'allowing one to track the lower and upper period of a cycle. First track the upper or lower period of the to
#'be extracted cycle and then track the other boundary. Tracking points can be selected in the Interactive interface and will be shown as white dots
#'connected by a black line. When one wants to deselect a point the white dots can be re-clicked/re-selected and will turn red which
#'indicates that the previously selected point is deselected. Deselecting points can be quite tricky.
#'After tracking the lower and upper boundaries of the cycle the \code{\link{dynamic_extraction}} function
#'will extract the signal in between the boundaries. the output can then used as input for the
#'\code{\link{minimal_tuning}} function to create an age model.
#' @param wavelet Wavelet object created using the \code{\link{analyze_wavelet}} function.
#' @param n.levels Number of color levels \code{Default=100}.
#' @param add_peaks Setting which indicates whether spectral peaks should be
#' added to the tracking plot \code{Default=FALSE}.
#' @param periodlab label for the y-axis \code{Default="Period (metres)"}.
#' @param x_lab label for the x-axis \code{Default="depth (metres)"}.
#'@param palette_name Name of the color palette which is used for plotting.
#'The color palettes than can be chosen depends on which the R package is specified in
#'the color_brewer parameter. The included R packages from which palettes can be chosen
#'from are; the 'RColorBrewer', 'grDevices', 'ColorRamps' and 'Viridis' R packages.
#'There are many options to choose from so please
#'read the documentation of these packages \code{Default=rainbow}.
#'The R package 'viridis' has the color palette options: “magma”, “plasma”,
#'“inferno”, “viridis”, “mako”, and “rocket” and “turbo”
#'To see the color palette options of the The R pacakge 'RColorBrewer' run
#'the RColorBrewer::brewer.pal.info() function
#'The R package 'colorRamps' has the color palette options:"blue2green",
#'"blue2green2red", "blue2red", "blue2yellow", "colorRamps", "cyan2yellow",
#'"green2red", "magenta2green", "matlab.like", "matlab.like2" and "ygobb"
#'The R package 'grDevices' has the built in palette options:"rainbow",
#'"heat.colors", "terrain.colors","topo.colors" and "cm.colors"
#'To see even more color palette options of the The R pacakge 'grDevices' run
#'the grDevices::hcl.pals() function
#'@param color_brewer Name of the R package from which the color palette is chosen from.
#'The included R packages from which palettes can be chosen
#'are; the RColorBrewer, grDevices, ColorRamps and Viridis R packages.
#'There are many options to choose from so please
#'read the documentation of these packages. "\code{Default=grDevices}
#'@param plot_horizontal plot the wavelet horizontal or vertical eg y axis is depth or y axis power \code{Default=TRUE}
#'@param smooth smooth the tracked period using the "loess_auto" function
#'@param add_mean add the mean to the extracted signal
#'
#'@return Results of the tracking of a cycle in the wavelet spectra is a matrix with 3 columns.
#'The first column is depth/time
#'The second column is the extracted tracked cycle
#'The third column is upper tracked period
#'The fourth column is lower tracked period
#' @author
#' The function is based/inspired on the \link[astrochron]{traceFreq}
#'function of the 'astrochron' R package
#'
#'@references
#'Routines for astrochronologic testing, astronomical time scale construction, and
#'time series analysis <doi:10.1016/j.earscirev.2018.11.015>
#'
#'@examples
#'\dontrun{
#'#Track the 405kyr upper and lower periods of the eccentricity cycle in the
#'#magnetic susceptibility record of the Sullivan core of Pas et al., (2018)
#'
#'mag_wt <- analyze_wavelet(
#' data = mag,
#' dj = 1 / 100,
#' lowerPeriod = 0.1,
#' upperPeriod = 254,
#' verbose = FALSE,
#' omega_nr = 10
#')
#'
#'mag_ext <- dynamic_extraction(
#' wavelet = mag_wt,
#' n.levels = 100,
#' add_peaks = FALSE,
#' periodlab = "Period (metres)",
#' x_lab = "depth (metres)",
#' palette_name = "rainbow",
#' color_brewer = "grDevices",
#' plot_horizontal = TRUE,
#' smooth = TRUE,
#' add_mean = TRUE
#')
#'}
#'
#' @export
#' @importFrom reshape2 melt
#' @importFrom stats quantile
#' @importFrom graphics par
#' @importFrom grDevices dev.new
#' @importFrom graphics image
#' @importFrom graphics axis
#' @importFrom graphics mtext
#' @importFrom graphics text
#' @importFrom graphics box
#' @importFrom graphics polygon
#' @importFrom grDevices rgb
#' @importFrom graphics points
#' @importFrom stats aggregate
#' @importFrom stats na.omit
#' @importFrom astrochron traceFreq
#' @importFrom RColorBrewer brewer.pal.info
#' @importFrom RColorBrewer brewer.pal
#' @importFrom grDevices colorRampPalette
#' @importFrom colorRamps blue2green
#' @importFrom colorRamps blue2green2red
#' @importFrom colorRamps blue2red
#' @importFrom colorRamps blue2yellow
#' @importFrom colorRamps cyan2yellow
#' @importFrom colorRamps green2red
#' @importFrom colorRamps magenta2green
#' @importFrom colorRamps matlab.like
#' @importFrom colorRamps matlab.like2
#' @importFrom colorRamps ygobb
#' @importFrom viridis viridis
#' @importFrom viridis magma
#' @importFrom viridis plasma
#' @importFrom viridis inferno
#' @importFrom viridis cividis
#' @importFrom viridis mako
#' @importFrom viridis rocket
#' @importFrom viridis turbo
#' @importFrom grDevices rainbow
#' @importFrom grDevices heat.colors
#' @importFrom grDevices terrain.colors
#' @importFrom grDevices topo.colors
#' @importFrom grDevices cm.colors
#' @importFrom grDevices hcl.colors
#' @importFrom DescTools Closest
#' @importFrom matrixStats rowMaxs
#' @importFrom matrixStats rowMins
dynamic_extraction <- function(wavelet = NULL,
n.levels = 100,
add_peaks = FALSE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
palette_name = "rainbow",
color_brewer = "grDevices",
plot_horizontal = TRUE,
smooth = FALSE,
add_mean = TRUE) {
plot.COI = TRUE
if (color_brewer == "RColorBrewer") {
key.cols <-
rev(colorRampPalette(brewer.pal(brewer.pal.info[palette_name, 1], palette_name))(n.levels))
}
if (color_brewer == "colorRamps") {
color_brewer_Sel <-
paste("colorRamps::", palette_name, "(n=n.levels)")
key.cols = eval(parse(text = color_brewer_Sel))
}
if (color_brewer == "grDevices") {
if (palette_name == "rainbow") {
color_brewer_Sel <-
"grDevices::rainbow(n=n.levels, start = 0, end = 0.7)"
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else if (palette_name == "heat.colors" |
palette_name == "terrain.colors" |
palette_name == "topo.colors" |
palette_name == "cm.colors") {
color_brewer_Sel <-
paste("grDevices::",
palette_name,
"(n=n.levels, start = 0, end = 1)")
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else{
key.cols <-
hcl.colors(
n = n.levels,
palette = palette_name,
alpha = NULL,
rev = FALSE,
fixup = TRUE
)
}
}
if (color_brewer == "viridis") {
color_brewer_Sel <-
paste("viridis::", palette_name, "(n=n.levels,direction = -1)")
key.cols = rev(eval(parse(text = color_brewer_Sel)))
}
useRaster = TRUE
plot.legend = TRUE
exponent = 1
periodtck = 0.02
periodtcl = 0.5
main = NULL
lwd = 2
lwd.axis = 1
legend.params = list(
width = 1.2,
shrink = 0.9,
mar = 5.1,
n.ticks = 6,
label.digits = 3,
label.format = "f",
lab = NULL,
lab.line = 2.5
)
axis.1 <- wavelet$axis.1
axis.2 <- wavelet$axis.2
Power = wavelet$Power ^ exponent
wavelet.levels = quantile(Power, probs = seq(
from = 0,
to = 1,
length.out = n.levels + 1
))
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
image.plt = par()$plt
legend.plt = NULL
if (plot_horizontal == TRUE) {
dev.new(width = 15,
height = 7,
noRStudioGD = TRUE)
if (plot.legend == T) {
legend.plt = par()$plt
char.size = par()$cin[1] / par()$din[1]
hoffset = char.size * par()$mar[4]
legend.width = char.size * legend.params$width
legend.mar = char.size * legend.params$mar
legend.plt[2] = 1 - legend.mar
legend.plt[1] = legend.plt[2] - legend.width
vmar = (legend.plt[4] - legend.plt[3]) * ((1 - legend.params$shrink) /
2)
legend.plt[4] = legend.plt[4] - vmar
legend.plt[3] = legend.plt[3] + vmar
image.plt[2] = min(image.plt[2], legend.plt[1] - hoffset)
par(plt = legend.plt)
key.marks = round(seq(
from = 0,
to = 1,
length.out = legend.params$n.ticks
) *
n.levels)
key.labels = formatC(
as.numeric(wavelet.levels),
digits = legend.params$label.digits,
format = legend.params$label.format
)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(wavelet.levels,
nrow = 1),
col = key.cols,
breaks = wavelet.levels,
useRaster = useRaster,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
legend.params$width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
text(
x = par()$usr[2] + (1.5 + legend.params$lab.line) *
par()$cxy[1],
y = n.levels / 2,
labels = legend.params$lab,
xpd = NA,
srt = 270,
font = par()$font.lab,
cex = par()$cex.lab
)
box(lwd = lwd.axis)
par(new = TRUE, plt = image.plt)
}
par(mar = c(4, 4, 3, 5))
image(
x = wavelet$x,
y = axis.2,
z = t(Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
ylab = periodlab,
xlab = x_lab,
axes = TRUE,
yaxt = "n" ,
main = main
)
if (plot.COI == T) {
polygon(wavelet$coi.1 ,
wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5))
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
2,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
4,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 2,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
Pwert <- wavelet$Power
for (j in 1:ncol(Pwert)) {
data <- cbind(log2(wavelet$Period), Pwert[, j])
data_dif <- data[1:(nrow(data) - 1), 2] - data[2:(nrow(data)), 2]
data_dif_v2 <-
data_dif[1:(length(data_dif) - 1)] - data_dif[2:(length(data_dif))]
Pwert[, j] <-
c(data_dif_v2, data_dif_v2[length(data_dif_v2)], data_dif_v2[length(data_dif_v2)]) *
-1
}
maxdetect <-
matrix(nrow = (nrow(Pwert)), ncol = ncol(Pwert), 0)
for (j in 1:ncol(Pwert)) {
for (i in 2:(nrow(maxdetect) - 1)) {
if ((Pwert[i, j] - Pwert[(i + 1), j] > 0) &
(Pwert[i, j] - Pwert[(i - 1), j] > 0))
{
maxdetect[i, j] <- 1
}
}
}
maxdetect2 <- melt(maxdetect)
depth <- rep(wavelet$x, each = length(wavelet$axis.2))
period <- rep(wavelet$axis.2, times = length(wavelet$x))
maxdetect2 <- as.data.frame(maxdetect2)
maxdetect2[, 1] <- period
maxdetect2[, 2] <- depth
maxdetect2 <- maxdetect2[maxdetect2$value > 0, ]
colnames(maxdetect2) <- c("y_val", "x_val", "ridge")
}
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
x <- rep(wavelet$x, each = length(wavelet$axis.2))
y <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
x <- xy$x
y <- xy$y
sel <- cbind(rep(FALSE, length(x)), rep(FALSE, length(x)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
image(
x = wavelet$x,
y = axis.2,
z = t(Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
ylab = periodlab,
xlab = x_lab,
axes = TRUE,
yaxt = "n" ,
main = main
)
if (plot.COI == T) {
polygon(
wavelet$coi.1 ,
wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5)
)
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
2,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
4,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 2,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
loc_sort <- data.frame(x[sel[, 1]], y[sel[, 1]])
lines(loc_sort[order(loc_sort[, 1]), ], col = "black")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
out <- data.frame(x[sel[, 1]], y[sel[, 1]])
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
colnames(out) <- c("depth", "period")
}
out_1 <- out
if (plot.legend == T) {
legend.plt = par()$plt
char.size = par()$cin[1] / par()$din[1]
hoffset = char.size * par()$mar[4]
legend.width = char.size * legend.params$width
legend.mar = char.size * legend.params$mar
legend.plt[2] = 1 - legend.mar
legend.plt[1] = legend.plt[2] - legend.width
vmar = (legend.plt[4] - legend.plt[3]) * ((1 - legend.params$shrink) /
2)
legend.plt[4] = legend.plt[4] - vmar
legend.plt[3] = legend.plt[3] + vmar
image.plt[2] = min(image.plt[2], legend.plt[1] - hoffset)
par(plt = legend.plt)
key.marks = round(seq(
from = 0,
to = 1,
length.out = legend.params$n.ticks
) *
n.levels)
key.labels = formatC(
as.numeric(wavelet.levels),
digits = legend.params$label.digits,
format = legend.params$label.format
)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(wavelet.levels,
nrow = 1),
col = key.cols,
breaks = wavelet.levels,
useRaster = useRaster,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
legend.params$width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
text(
x = par()$usr[2] + (1.5 + legend.params$lab.line) *
par()$cxy[1],
y = n.levels / 2,
labels = legend.params$lab,
xpd = NA,
srt = 270,
font = par()$font.lab,
cex = par()$cex.lab
)
box(lwd = lwd.axis)
par(new = TRUE, plt = image.plt)
}
par(mar = c(4, 4, 3, 5))
image(
x = wavelet$x,
y = axis.2,
z = t(Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
ylab = periodlab,
xlab = x_lab,
axes = TRUE,
yaxt = "n" ,
main = main
)
lines(out_1[, 1],
log2(out_1[, 2]),
col = "black",
lwd = 2)
if (plot.COI == T) {
polygon(wavelet$coi.1 ,
wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5))
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
2,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
4,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 2,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
x <- rep(wavelet$x, each = length(wavelet$axis.2))
y <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
x <- xy$x
y <- xy$y
sel <- cbind(rep(FALSE, length(x)), rep(FALSE, length(x)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
image(
x = wavelet$x,
y = axis.2,
z = t(Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
ylab = periodlab,
xlab = x_lab,
axes = TRUE,
yaxt = "n" ,
main = main
)
lines(out_1[, 1],
log2(out_1[, 2]),
col = "black",
lwd = 2)
if (plot.COI == T) {
polygon(
wavelet$coi.1 ,
wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5)
)
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
2,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
4,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 2,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
loc_sort <- data.frame(x[sel[, 1]], y[sel[, 1]])
lines(loc_sort[order(loc_sort[, 1]), ], col = "black")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
out <- data.frame(x[sel[, 1]], y[sel[, 1]])
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
colnames(out) <- c("depth", "period")
}
res_list <- list(out, out_1)
}
if (plot_horizontal == FALSE) {
dev.new(width = 7,
height = 10,
noRStudioGD = TRUE)
if (plot.legend == T) {
legend.plt = par()$plt
char.size = par()$cin[1] / par()$din[1]
hoffset = char.size * par()$mar[4]
legend.width = char.size * legend.params$width
legend.mar = char.size * legend.params$mar
legend.plt[2] = 1 - legend.mar
legend.plt[1] = legend.plt[2] - legend.width
vmar = (legend.plt[4] - legend.plt[3]) * ((1 - legend.params$shrink) /
2)
legend.plt[4] = legend.plt[4] - vmar
legend.plt[3] = legend.plt[3] + vmar
image.plt[2] = min(image.plt[2], legend.plt[1] - hoffset)
par(plt = legend.plt)
key.marks = round(seq(
from = 0,
to = 1,
length.out = legend.params$n.ticks
) *
n.levels)
key.labels = formatC(
as.numeric(wavelet.levels),
digits = legend.params$label.digits,
format = legend.params$label.format
)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(wavelet.levels,
nrow = 1),
col = key.cols,
breaks = wavelet.levels,
useRaster = useRaster,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
legend.params$width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
text(
x = par()$usr[2] + (1.5 + legend.params$lab.line) *
par()$cxy[1],
y = n.levels / 2,
labels = legend.params$lab,
xpd = NA,
srt = 270,
font = par()$font.lab,
cex = par()$cex.lab
)
box(lwd = lwd.axis)
par(new = TRUE, plt = image.plt)
}
par(mar = c(4, 4, 3, 5))
image(
y = wavelet$x,
x = axis.2,
z = (Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
xlab = periodlab,
ylab = x_lab,
axes = TRUE,
xaxt = "n" ,
main = main
)
if (plot.COI == T) {
polygon(wavelet$coi.2 ,
wavelet$coi.1,
border = NA,
col = rgb(1, 1, 1, 0.5))
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 1,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
Pwert <- wavelet$Power
maxdetect <-
matrix(nrow = (nrow(Pwert)), ncol = ncol(Pwert), 0)
for (j in 1:ncol(Pwert)) {
for (i in 2:(nrow(maxdetect) - 1)) {
if ((Pwert[i, j] - Pwert[(i + 1), j] > 0) &
(Pwert[i, j] - Pwert[(i - 1), j] > 0))
{
maxdetect[i, j] <- 1
}
}
}
maxdetect2 <- melt(maxdetect)
depth <- rep(wavelet$x, each = length(wavelet$axis.2))
period <- rep(wavelet$axis.2, times = length(wavelet$x))
maxdetect2 <- as.data.frame(maxdetect2)
maxdetect2[, 2] <- period
maxdetect2[, 1] <- depth
maxdetect2 <- maxdetect2[maxdetect2$value > 0, ]
colnames(maxdetect2) <- c("y_val", "x_val", "ridge")
}
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
y <- rep(wavelet$x, each = length(wavelet$axis.2))
x <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
y <- xy$y
x <- xy$x
sel <- cbind(rep(FALSE, length(y)), rep(FALSE, length(y)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
image(
y = wavelet$x,
x = axis.2,
z = (Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
xlab = periodlab,
ylab = x_lab,
axes = TRUE,
xaxt = "n" ,
main = main
)
if (plot.COI == T) {
polygon(
wavelet$coi.2 ,
wavelet$coi.1,
border = NA,
col = rgb(1, 1, 1, 0.5)
)
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 1,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
loc_sort <- data.frame(x[sel[, 1]], y[sel[, 1]])
lines(loc_sort[order(loc_sort[, 2]), ], col = "black")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
out <- data.frame(y[sel[, 1]], x[sel[, 1]])
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
colnames(out) <- c("depth", "period")
}
out_1 <- out
if (plot.legend == T) {
legend.plt = par()$plt
char.size = par()$cin[1] / par()$din[1]
hoffset = char.size * par()$mar[4]
legend.width = char.size * legend.params$width
legend.mar = char.size * legend.params$mar
legend.plt[2] = 1 - legend.mar
legend.plt[1] = legend.plt[2] - legend.width
vmar = (legend.plt[4] - legend.plt[3]) * ((1 - legend.params$shrink) /
2)
legend.plt[4] = legend.plt[4] - vmar
legend.plt[3] = legend.plt[3] + vmar
image.plt[2] = min(image.plt[2], legend.plt[1] - hoffset)
par(plt = legend.plt)
key.marks = round(seq(
from = 0,
to = 1,
length.out = legend.params$n.ticks
) *
n.levels)
key.labels = formatC(
as.numeric(wavelet.levels),
digits = legend.params$label.digits,
format = legend.params$label.format
)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(wavelet.levels,
nrow = 1),
col = key.cols,
breaks = wavelet.levels,
useRaster = useRaster,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
legend.params$width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
text(
x = par()$usr[2] + (1.5 + legend.params$lab.line) *
par()$cxy[1],
y = n.levels / 2,
labels = legend.params$lab,
xpd = NA,
srt = 270,
font = par()$font.lab,
cex = par()$cex.lab
)
box(lwd = lwd.axis)
par(new = TRUE, plt = image.plt)
}
par(mar = c(4, 4, 3, 5))
image(
y = wavelet$x,
x = axis.2,
z = (Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
xlab = periodlab,
ylab = x_lab,
axes = TRUE,
xaxt = "n" ,
main = main
)
lines(
y = out_1[, 1],
x = log2(out_1[, 2]),
col = "black",
lwd = 2
)
if (plot.COI == T) {
polygon(wavelet$coi.2 ,
wavelet$coi.1,
border = NA,
col = rgb(1, 1, 1, 0.5))
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 1,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
y <- rep(wavelet$x, each = length(wavelet$axis.2))
x <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
y <- xy$y
x <- xy$x
sel <- cbind(rep(FALSE, length(y)), rep(FALSE, length(y)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
image(
y = wavelet$x,
x = axis.2,
z = (Power),
col = key.cols,
breaks = wavelet.levels,
useRaster = TRUE,
xlab = periodlab,
ylab = x_lab,
axes = TRUE,
xaxt = "n" ,
main = main
)
lines(
y = out_1[, 1],
x = log2(out_1[, 2]),
col = "black",
lwd = 2
)
if (plot.COI == T) {
polygon(
wavelet$coi.2 ,
wavelet$coi.1,
border = NA,
col = rgb(1, 1, 1, 0.5)
)
}
box(lwd = lwd.axis)
period.tick = unique(trunc(axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 1,
at = period.tick,
las = 1,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (add_peaks == TRUE) {
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
loc_sort <- data.frame(x[sel[, 1]], y[sel[, 1]])
lines(loc_sort[order(loc_sort[, 2]), ], col = "black")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
out <- data.frame(y[sel[, 1]], x[sel[, 1]])
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
colnames(out) <- c("depth", "period")
}
res_list <- list(out, out_1)
}
res_1 <- res_list[[1]]
x_axis <- wavelet$x
yleft_comp <- res_1[1, 2]
yright_com <- res_1[nrow(res_1), 2]
seq <-
seq(
from = min(x_axis),
to = max(x_axis),
by = abs(x_axis[2] - x_axis[1])
)
app <-
approx(
x = res_1[, 1],
y = res_1[, 2],
xout = seq,
method = "linear",
yleft = yleft_comp,
yright = yright_com
)
completed_series_1 <- as.data.frame(cbind(app$x, app$y))
if (smooth == TRUE) {
completed_series_1 <- loess_auto(
time_series = completed_series_1,
genplot = FALSE,
print_span = FALSE,
keep_editable = FALSE
)
}
res_2 <- res_list[[2]]
yleft_comp <- res_2[1, 2]
yright_com <- res_2[nrow(res_2), 2]
app <-
approx(
x = res_2[, 1],
y = res_2[, 2],
xout = seq,
method = "linear",
yleft = yleft_comp,
yright = yright_com
)
completed_series_2 <- as.data.frame(cbind(app$x, app$y))
if (smooth == TRUE) {
completed_series_2 <- loess_auto(
time_series = completed_series_2,
genplot = FALSE,
print_span = FALSE,
keep_editable = FALSE
)
}
completed_series <-
cbind(completed_series_2[, c(1, 2)], completed_series_1[, 2])
my.w <- wavelet
my.data <- cbind(wavelet$x, wavelet$y)
filtered_cycle <- my.data[, 1]
filtered_cycle <- as.data.frame(filtered_cycle)
filtered_cycle$value <- NA
Wave = my.w$Wave
Power = my.w$Power
nc = my.w$nc
nr = my.w$nr
dt = my.w$dt
dj = my.w$dj
Scale = my.w$Scale
Period = my.w$Period
loess.span = my.w$loess.span
rec.waves = matrix(0, nrow = nr, ncol = nc)
for (s.ind in seq_len(nr)) {
rec.waves[s.ind,] = (Re(Wave[s.ind,]) / sqrt(Scale[s.ind])) *
dj * sqrt(dt) / (pi ^ (-1 / 4))
}
interpolated <- as.data.frame(completed_series)
interpolated[, 2] <- rowMaxs(as.matrix(completed_series[, c(2, 3)]))
interpolated[, 3] <- rowMins(as.matrix(completed_series[, c(2, 3)]))
for (i in 1:nrow(filtered_cycle)) {
row_nr_high <- Closest(Period[], interpolated[i, 2], which = TRUE)
row_nr_low <- Closest(Period[], interpolated[i, 3], which = TRUE)
row_nr_high <- row_nr_high[1]
row_nr_low <- row_nr_low[1]
value <- rec.waves[c(row_nr_low:row_nr_high), i]
value <- sum(value, na.rm = T)
value <- as.numeric(value)
filtered_cycle[i, 2] <- value
}
rec_value <- colSums(rec.waves, na.rm = T)
filtered_cycle[, 2] <-
(filtered_cycle[, 2]) * sd(my.data[, 2]) / sd(rec_value)
if (add_mean == TRUE) {
filtered_cycle[, 2] <- filtered_cycle[, 2] + mean(my.data[, 2])
}
return(cbind(filtered_cycle, interpolated[, c(2, 3)]))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.