Nothing
#' @title Track the period of a cycle in a wavelet spectra
#'
#' @description Interactively select points in a wavelet spectra to trace a period in a wavelet spectra.
#'The \code{\link{track_period_wavelet}} function plots a wavelet spectra in which spectral peaks can selected
#'allowing one to track a ridge hence one can track the a cycle with a changing period.
#'Tracking points can be selected in the Interactive interface and will be shown as white dots
#'when one wants to deselect a point the white dots can be re-clicked/re-selected and will turn red which
#'indicates that the previously selected point is deselected. Deselecting points can be quite tricky
#'due to the close spacing of points and such the \code{\link{delpts_tracked_period_wt}} can be used to
#'delete points were previously selected using the \code{\link{track_period_wavelet}} function.
#' @param wavelet Wavelet object created using the \code{\link{analyze_wavelet}} function.
#' @param astro_cycle Duration (in kyr) of the cycle which traced.
#' @param n.levels Number of color levels \code{Default=100}.
#' @param track_peaks Setting which indicates whether tracking is restricted
#' to spectral peaks (track_peaks=TRUE) or whether any point within the wavelet
#' spectra can be selected (track_peaks=FALSE) \code{Default=TRUE}.
#' @param periodlab label for the y-axis \code{Default="Period (metres)"}.
#' @param x_lab label for the x-axis \code{Default="depth (metres)"}.
#'@param palette_name Name of the color palette which is used for plotting.
#'The color palettes than can be chosen depends on which the R package is specified in
#'the color_brewer parameter. The included R packages from which palettes can be chosen
#'from are; the 'RColorBrewer', 'grDevices', 'ColorRamps' and 'Viridis' R packages.
#'There are many options to choose from so please
#'read the documentation of these packages \code{Default=rainbow}.
#'The R package 'viridis' has the color palette options: “magma”, “plasma”,
#'“inferno”, “viridis”, “mako”, and “rocket” and “turbo”
#'To see the color palette options of the The R pacakge 'RColorBrewer' run
#'the RColorBrewer::brewer.pal.info() function
#'The R package 'colorRamps' has the color palette options:"blue2green",
#'"blue2green2red", "blue2red", "blue2yellow", "colorRamps", "cyan2yellow",
#'"green2red", "magenta2green", "matlab.like", "matlab.like2" and "ygobb"
#'The R package 'grDevices' has the built in palette options:"rainbow",
#'"heat.colors", "terrain.colors","topo.colors" and "cm.colors"
#'To see even more color palette options of the The R pacakge 'grDevices' run
#'the grDevices::hcl.pals() function
#'@param color_brewer Name of the R package from which the color palette is chosen from.
#'The included R packages from which palettes can be chosen
#'are; the RColorBrewer, grDevices, ColorRamps and Viridis R packages.
#'There are many options to choose from so please
#'read the documentation of these packages. "\code{Default=grDevices}
#'@param plot_horizontal plot the wavelet horizontal or vertical eg y axis is depth or y axis power \code{Default=TRUE}
#'@param lowerPeriod Lowest period value which will be plotted
#'@param upperPeriod Highest period value which will be plotted
#'@param plot_dir The direction of the proxy record which is assumed for tuning if time increases with increasing depth/time values
#'(e.g. bore hole data which gets older with increasing depth ) then plot_dir should be set to TRUE
#'if time decreases with depth/time values (eg stratospheric logs where 0m is the bottom of the section)
#'then plot_dir should be set to FALSE \code{plot_dir=TRUE}
#'@param add_lines Add lines to the wavelet plot input should be matrix with first axis being depth/time the columns after that
#'should be period values \code{Default=NULL}
#'@param add_points Add points to the wavelet plot input should be matrix with first axis being depth/time and columns after that
#'should be period values \code{Default=NULL}
#'@param add_abline_h Add horizontal lines to the plot. Specify the lines as a vector e.g. c(2,3,5,6) \code{Default=NULL}
#'@param add_abline_v Add vertical lines to the plot. Specify the lines as a vector e.g. c(2,3,5,6) \code{Default=NULL}
#'@return Results of the tracking of a cycle in the wavelet spectra is a matrix with 3 columns.
#'The first column is depth/time
#'The second column is the period of the tracked cycle
#'The third column is the sedimentation rate based on the duration (in time) of the tracked cycle
#'
#' @author
#' The function is based/inspired on the \link[astrochron]{traceFreq}
#'function of the 'astrochron' R package
#'
#'@references
#'Routines for astrochronologic testing, astronomical time scale construction, and
#'time series analysis <doi:10.1016/j.earscirev.2018.11.015>
#'
#'@examples
#'\donttest{
#'#Track the 405kyr eccentricity cycle in the magnetic susceptibility record
#'# of the Sullivan core of Pas et al., (2018)
#'
#'mag_wt <- analyze_wavelet(data = mag,
#' dj = 1/100,
#' lowerPeriod = 0.1,
#' upperPeriod = 254,
#' verbose = FALSE,
#' omega_nr = 10)
#'
#' mag_track <- track_period_wavelet(wavelet = mag_wt,
#'astro_cycle = 405,
#'n.levels = 100,
#'track_peaks = TRUE,
#'periodlab = "Period (metres)",
#'x_lab = "depth (metres)",
#'palette_name = "rainbow",
#'color_brewer = "grDevices",
#'plot_horizontal = TRUE,
#'plot_dir = TRUE,
#'lowerPeriod = NULL,
#'upperPeriod = NULL,
#'add_lines = NULL,
#'add_points = NULL,
#'add_abline_h = NULL,
#'add_abline_v = NULL)
#'}
#'
#' @export
#' @importFrom reshape2 melt
#' @importFrom stats quantile
#' @importFrom graphics par
#' @importFrom grDevices dev.new
#' @importFrom graphics image
#' @importFrom graphics axis
#' @importFrom graphics mtext
#' @importFrom graphics text
#' @importFrom graphics box
#' @importFrom graphics polygon
#' @importFrom grDevices rgb
#' @importFrom graphics points
#' @importFrom stats aggregate
#' @importFrom stats na.omit
#' @importFrom astrochron traceFreq
#' @importFrom RColorBrewer brewer.pal.info
#' @importFrom RColorBrewer brewer.pal
#' @importFrom grDevices colorRampPalette
#' @importFrom colorRamps blue2green
#' @importFrom colorRamps blue2green2red
#' @importFrom colorRamps blue2red
#' @importFrom colorRamps blue2yellow
#' @importFrom colorRamps cyan2yellow
#' @importFrom colorRamps green2red
#' @importFrom colorRamps magenta2green
#' @importFrom colorRamps matlab.like
#' @importFrom colorRamps matlab.like2
#' @importFrom colorRamps ygobb
#' @importFrom viridis viridis
#' @importFrom viridis magma
#' @importFrom viridis plasma
#' @importFrom viridis inferno
#' @importFrom viridis cividis
#' @importFrom viridis mako
#' @importFrom viridis rocket
#' @importFrom viridis turbo
#' @importFrom grDevices rainbow
#' @importFrom grDevices heat.colors
#' @importFrom grDevices terrain.colors
#' @importFrom grDevices topo.colors
#' @importFrom grDevices cm.colors
#' @importFrom grDevices hcl.colors
track_period_wavelet <- function(wavelet = NULL,
astro_cycle = 405,
n.levels = 100,
track_peaks = TRUE,
periodlab = "Period (metres)",
x_lab = "depth (metres)",
palette_name = "rainbow",
color_brewer = "grDevices",
plot_horizontal = TRUE,
plot_dir = TRUE,
lowerPeriod = NULL,
upperPeriod = NULL,
add_lines = NULL,
add_points = NULL,
add_abline_h = NULL,
add_abline_v = NULL)
{
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
maximum.level = max(wavelet$Power)
power_max_mat.levels = quantile(wavelet$Power, probs = seq(
from = 0,
to = 1,
length.out = n.levels + 1
))
if (color_brewer == "RColorBrewer") {
key.cols <-
rev(colorRampPalette(brewer.pal(brewer.pal.info[palette_name, 1], palette_name))(n.levels))
}
if (color_brewer == "colorRamps") {
color_brewer_Sel <-
paste("colorRamps::", palette_name, "(n=n.levels)")
key.cols = eval(parse(text = color_brewer_Sel))
}
if (color_brewer == "grDevices") {
if (palette_name == "rainbow") {
color_brewer_Sel <-
"grDevices::rainbow(n=n.levels, start = 0, end = 0.7)"
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else if (palette_name == "heat.colors" |
palette_name == "terrain.colors" |
palette_name == "topo.colors" |
palette_name == "cm.colors") {
color_brewer_Sel <-
paste("grDevices::",
palette_name,
"(n=n.levels, start = 0, end = 1)")
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else{
key.cols <-
hcl.colors(
n = n.levels,
palette = palette_name,
alpha = NULL,
rev = FALSE,
fixup = TRUE
)
}
}
if (color_brewer == "viridis") {
color_brewer_Sel <-
paste("viridis::", palette_name, "(n=n.levels,direction = -1)")
key.cols = rev(eval(parse(text = color_brewer_Sel)))
}
periodtck = 0.02
periodtcl = 0.5
main = NULL
lwd = 2
lwd.axis = 1
legend.params = list(
width = 1.2,
shrink = 0.9,
mar = 5.1,
n.ticks = 6,
label.digits = 3,
label.format = "f",
lab = NULL,
lab.line = 2.5
)
key.marks = round(seq(
from = 0,
to = 1,
length.out = legend.params$n.ticks
) *
n.levels)
key.labels = formatC(
as.numeric(power_max_mat.levels),
digits = legend.params$label.digits,
format = legend.params$label.format
)[key.marks + 1]
plot_horizontal <- TRUE
y_axis <- as.numeric(unlist(wavelet$Period))
pmax_avg_sel <- t(wavelet$Power)
depth <- wavelet$x
y_axis <- wavelet$Period
depth <- as.numeric(depth)
y_axis <- as.numeric(y_axis)
if (plot_dir != TRUE) {
xlim_vals = rev(c(min(wavelet$x), max(wavelet$x)))
} else{
xlim_vals = c(min(wavelet$x), max(wavelet$x))
}
if (is.null(lowerPeriod) == TRUE) {
lowerPeriod <- min(wavelet$Period)
}
if (is.null(upperPeriod) == TRUE) {
upperPeriod <- max(wavelet$Period)
}
ylim_vals = c(lowerPeriod, upperPeriod)
if (plot_horizontal == TRUE) {
dev.new(width = 15,
height = 7,
noRStudioGD = TRUE)
layout.matrix <- matrix(c(1, 2, 4, 3),
nrow = 2,
ncol = 2 ,
byrow = TRUE)
graphics::layout(mat = layout.matrix,
heights = c(0.25, 1),
# Heights of the two rows
widths = c(8, 2))
power_max_mat.levels = quantile(pmax_avg_sel,
probs = seq(
from = 0,
to = 1,
length.out = n.levels + 1
))
par(mar = c(0, 4, 2, 0))
plot(
y = wavelet$y,
x = wavelet$x,
type = "l",
xaxs = "i",
xlab = "",
ylab = "proxy value",
xaxt = "n",
xlim = xlim_vals
)
add_abline_v = FALSE
if (is.null(add_abline_v) != TRUE) {
abline(v = add_abline_v)
}
par(new = FALSE,
mar = c(3, 2, 2, 2),
mgp = c(2, 1, 0))
image(
x = seq(from = 0, to = n.levels),
y = 1,
z = t(matrix(power_max_mat.levels,
nrow = 1)),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
yaxt = "n",
xaxt = "n",
xlab = "Power",
ylab = ""
)
axis(
1,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = 1.2
)
mtext(
key.labels,
side = 1,
at = key.marks,
line = 0.1,
las = 2,
cex = 0.75
)
box(lwd = lwd.axis)
par(new = FALSE, mar = c(4, 0, 0, 0.5))
plot(
x = wavelet$Power.avg,
y = wavelet$Period,
log = "y",
type = "l",
yaxs = "i",
yaxt = "n",
xlab = "Wt. power",
xaxs = "i",
ylim = ylim_vals
)
add_abline_h <- FALSE
if (is.null(add_abline_h) != TRUE) {
abline(h = add_abline_h)
}
par(new = FALSE,
mar = c(4, 4, 0, 0),
xpd = FALSE)
image(
x = wavelet$x,
y = wavelet$axis.2,
z = t(wavelet$Power),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
ylab = periodlab,
xlab = x_lab,
axes = TRUE,
yaxt = "n" ,
main = main,
xlim = xlim_vals,
ylim = log2(ylim_vals)
)
polygon(
x = wavelet$coi.1 ,
y = wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5),
ylim = xlim_vals,
xlim = log2(ylim_vals)
)
box(lwd = lwd.axis)
period.tick = unique(trunc(wavelet$axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
2,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
axis(
4,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 2,
at = period.tick,
las = 2,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (is.null(add_lines) != TRUE) {
for (i in 2:ncol(add_lines))
lines(add_lines[, 1], log2(add_lines[, i]))
}
if (is.null(add_points) != TRUE) {
for (i in 2:ncol(add_points))
points(add_points[, 1], log2(add_points[, i]))
}
if (is.null(add_abline_h) != TRUE) {
abline(h = log2(add_abline_h))
}
if (is.null(add_abline_v) != TRUE) {
abline(v = add_abline_v)
}
if (track_peaks == TRUE) {
Pwert <- wavelet$Power
maxdetect <-
matrix(nrow = (nrow(Pwert)), ncol = ncol(Pwert), 0)
for (j in 1:ncol(Pwert)) {
for (i in 2:(nrow(maxdetect) - 1)) {
if ((Pwert[i, j] - Pwert[(i + 1), j] > 0) &
(Pwert[i, j] - Pwert[(i - 1), j] > 0))
{
maxdetect[i, j] <- 1
}
}
}
maxdetect2 <- melt(maxdetect)
depth <- rep(wavelet$x, each = length(wavelet$axis.2))
period <- rep(wavelet$axis.2, times = length(wavelet$x))
maxdetect2 <- as.data.frame(maxdetect2)
maxdetect2[, 2] <- period
maxdetect2[, 1] <- depth
maxdetect2 <- maxdetect2[maxdetect2$value > 0, ]
colnames(maxdetect2) <- c("y_val", "x_val", "ridge")
points(
y = maxdetect2$x_val,
x = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
n <- nrow(maxdetect2)
y = maxdetect2$x_val
x = maxdetect2$y_val
} else {
x <- rep(wavelet$x, each = length(wavelet$axis.2))
y <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
}
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
y <- xy$y
x <- xy$x
sel <- cbind(rep(FALSE, length(y)), rep(FALSE, length(y)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
pts <- sel[, 1]
if (track_peaks == TRUE) {
out <- data.frame(cbind(maxdetect2[pts, 1], maxdetect2[pts, 2]))
out <- na.omit(out)
}
if (track_peaks == FALSE) {
out <- data.frame(y[sel[, 1]], x[sel[, 1]])
out <- na.omit(out)
}
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
out$sedrate <- out[, 2] / astro_cycle * 100
colnames(out) <- c("depth", "period", "sedrate")
}
}
if (plot_horizontal == FALSE) {
dev.new(width = 7,
height = 10,
noRStudioGD = TRUE)
layout.matrix <- matrix(c(1, 2, 3, 4),
nrow = 2,
ncol = 2 ,
byrow = TRUE)
graphics::layout(mat = layout.matrix,
heights = c(1, 4),
# Heights of the two rows
widths = c(1, 4))
power_max_mat.levels = quantile(pmax_avg_sel,
probs = seq(
from = 0,
to = 1,
length.out = n.levels + 1
))
par(mar = c(2, 0.5, 2, 6), xpd = NA)
image(
y = seq(from = 0, to = n.levels),
x = 1,
z = (matrix(power_max_mat.levels,
nrow = 1)),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
yaxt = "n",
xaxt = "n",
xlab = "",
ylab = "",
)
axis(
2,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = 1.24
)
mtext(
key.labels,
side = 2,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
mtext(
c("Power"),
side = 1,
at = 1,
line = 0.5,
font = par()$font.axis,
cex = par()$cex.axis,
las = 1,
xpd = NA
)
#
box(lwd = lwd.axis)
par(mar = c(0, 0, 2, 2))
plot(
y = wavelet$Power.avg,
x = wavelet$Period,
log = "x",
type = "l",
xaxs = "i",
xaxt = "n",
ylab = "Wt. power",
xlab = "",
xaxs = "i",
xlim = ylim_vals
)
title(ylab = "Wt. power", xpd = NA)
par(mar = c(4, 4, 0, 0), xpd = TRUE)
plot(
x = wavelet$y,
y = wavelet$x,
type = "l",
yaxs = "i",
xlab = "proxy value",
ylab = x_lab,
#yaxt = "n",
ylim = xlim_vals
)
par(new = FALSE,
mar = c(4, 0, 0, 2),
xpd = FALSE)
image(
y = wavelet$x,
x = wavelet$axis.2,
z = (wavelet$Power),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
xlab = periodlab,
ylab = "",
#axes = FALSE,
#yaxt = "n" ,
xaxt = "n" ,
yaxt = "n" ,
main = main,
ylim = xlim_vals,
xlim = log2(ylim_vals)
)
polygon(
y = wavelet$coi.1 ,
x = wavelet$coi.2,
border = NA,
col = rgb(1, 1, 1, 0.5),
ylim = xlim_vals,
xlim = log2(ylim_vals)
)
box(lwd = lwd.axis)
period.tick = unique(trunc(wavelet$axis.2))
period.tick[period.tick < log2(wavelet$Period[1])] = NA
period.tick = na.omit(period.tick)
period.tick.label = 2 ^ (period.tick)
axis(
1,
lwd = lwd.axis,
at = period.tick,
labels = NA,
tck = periodtck,
tcl = periodtcl
)
mtext(
period.tick.label,
side = 1,
at = period.tick,
las = 2,
line = par()$mgp[2] - 0.5,
font = par()$font.axis,
cex = par()$cex.axis
)
if (is.null(add_lines) != TRUE) {
for (i in 2:ncol(add_lines))
lines(y = add_lines[, 1], x = log2(add_lines[, i]))
}
if (is.null(add_points) != TRUE) {
for (i in 2:ncol(add_points))
points(y = add_points[, 1], x = log2(add_points[, i]))
}
if (is.null(add_abline_h) != TRUE) {
abline(h = (add_abline_h))
}
if (is.null(add_abline_v) != TRUE) {
abline(v = log2(add_abline_v))
}
#track_peaks <- TRUE
if (track_peaks == TRUE) {
Pwert <- wavelet$Power
maxdetect <-
matrix(nrow = (nrow(Pwert)), ncol = ncol(Pwert), 0)
for (j in 1:ncol(Pwert)) {
for (i in 2:(nrow(maxdetect) - 1)) {
if ((Pwert[i, j] - Pwert[(i + 1), j] > 0) &
(Pwert[i, j] - Pwert[(i - 1), j] > 0))
{
maxdetect[i, j] <- 1
}
}
}
maxdetect2 <- melt(maxdetect)
depth <- rep(wavelet$x, each = length(wavelet$axis.2))
period <- rep(wavelet$axis.2, times = length(wavelet$x))
maxdetect2 <- as.data.frame(maxdetect2)
maxdetect2[, 2] <- period
maxdetect2[, 1] <- depth
maxdetect2 <- maxdetect2[maxdetect2$value > 0, ]
colnames(maxdetect2) <- c("y_val", "x_val", "ridge")
points(
x = maxdetect2$x_val,
y = maxdetect2$y_val,
type = "p",
pch = 1,
col = "black",
lwd = "0.5"
)
n <- nrow(maxdetect2)
x = maxdetect2$x_val
y = maxdetect2$y_val
} else {
y <- rep(wavelet$x, each = length(wavelet$axis.2))
x <- rep(wavelet$axis.2, times = length(wavelet$x))
n <- length(wavelet$x)
}
defaultW <- getOption("warn")
options(warn = -1)
xy <- xy.coords(x, y)
y <- xy$y
x <- xy$x
sel <- cbind(rep(FALSE, length(y)), rep(FALSE, length(y)))
while (sum(sel) < n) {
ans <- identify(x,
y,
n = 1,
plot = F,
tolerance = 0.1)
if (!length(ans))
break
if (sel[ans, 1] == FALSE) {
sel[ans, 1] <- TRUE
sel[ans, 2] <- FALSE
} else{
sel[ans, 1] <- FALSE
sel[ans, 2] <- TRUE
}
points(x[sel[, 1]], y[sel[, 1]], pch = 19, col = "white")
points(x[sel[, 2]], y[sel[, 2]], pch = 19, col = "red")
}
pts <- sel[, 1]
if (track_peaks == TRUE) {
out <- data.frame(cbind(maxdetect2[pts, 1], maxdetect2[pts, 2]))
out <- na.omit(out)
}
if (track_peaks == FALSE) {
out <- data.frame(y[sel[, 1]], x[sel[, 1]])
out <- na.omit(out)
}
if (nrow(out) != 0) {
out <- na.omit(out)
out <- out[order(out[, 1]),]
out <- na.omit(out)
out <- aggregate(out,
by = list(name = out[, 1]),
data = out,
FUN = mean)
out <- out[, c(2, 3)]
out[, 2] <- 2 ^ out[, 2]
out$sedrate <- out[, 2] / astro_cycle * 100
colnames(out) <- c("depth", "period", "sedrate")
}
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.