Nothing
#' @title Windowed fft based spectral analysis
#'
#' @description The \code{\link{win_fft}} function for conducts a windowed spectral analysis based on the fft
#'
#'@param data Input data set should consist of a matrix with 2 columns with first column being depth and the second column being a proxy
#'@param padfac Pad record with zero, zero padding smooths out the spectra
#'@param window_size size of the running window
#'@param run_multicore Run function using multiple cores \code{Default="FALSE"}
#'@param genplot Generate plot \code{Default="FALSE"}
#'@param x_lab label for the y-axis \code{Default="depth"}
#'@param y_lab label for the y-axis \code{Default="sedrate"}
#'@param plot_res plot 1 of 8 options option 1: Amplitude matrix,
#'option 2: Power matrix,
#'option 3: Phase matrix,
#'option 4: AR1_CL matrix,
#'option 5: AR1_Fit matrix ,
#'option 6: AR1_90_power matrix,
#'option 7: AR1_95_power matrix,
#'option 8: AR1_99_power matrix, \code{Default=1}
#'@param perc_vis Cutoff percentile when plotting \code{Default=0}
#'@param freq_max Maximum frequency to plot
#'@param freq_min Minimum frequency to plot
#'@param palette_name Name of the color palette which is used for plotting.
#'The color palettes than can be chosen depends on which the R package is specified in
#'the color_brewer parameter. The included R packages from which palettes can be chosen
#'from are; the 'RColorBrewer', 'grDevices', 'ColorRamps' and 'Viridis' R packages.
#'There are many options to choose from so please
#'read the documentation of these packages \code{Default=rainbow}.
#'The R package 'viridis' has the color palette options: “magma”, “plasma”,
#'“inferno”, “viridis”, “mako”, and “rocket” and “turbo”
#'To see the color palette options of the The R pacakge 'RColorBrewer' run
#'the RColorBrewer::brewer.pal.info() function
#'The R package 'colorRamps' has the color palette options:"blue2green",
#'"blue2green2red", "blue2red", "blue2yellow", "colorRamps", "cyan2yellow",
#'"green2red", "magenta2green", "matlab.like", "matlab.like2" and "ygobb"
#'The R package 'grDevices' has the built in palette options:"rainbow",
#'"heat.colors", "terrain.colors","topo.colors" and "cm.colors"
#'To see even more color palette options of the The R pacakge 'grDevices' run
#'the grDevices::hcl.pals() function
#'@param color_brewer Name of the R package from which the color palette is chosen from.
#'The included R packages from which palettes can be chosen
#'are; the RColorBrewer, grDevices, ColorRamps and Viridis R packages.
#'There are many options to choose from so please
#'read the documentation of these packages. "\code{Default=grDevices}
#'@param keep_editable Keep option to add extra features after plotting \code{Default=FALSE}
#' @param verbose Print text \code{Default=FALSE}.
#' @param dev_new Opens a new plotting window to plot the plot, this guarantees a "nice" looking plot however when plotting in an R markdown
#'document the plot might not plot \code{Default=FALSE}
#'
#' @author
#'Based on the \link[astrochron]{periodogram}
#'function of the 'astrochron' R package.
#'
#'@references
#'Routines for astrochronologic testing, astronomical time scale construction, and
#'time series analysis <doi:10.1016/j.earscirev.2018.11.015>
#'
#'
#'@examples
#'\donttest{
#'#Conduct a windowed ftt on the magnetic susceptibility record
#'#of the Sullivan core of Pas et al., (2018).
#'
#'mag_win_fft <- win_fft(data= mag,
#' padfac = 5,
#' window_size = 12.5,
#' run_multicore = FALSE,
#' genplot = FALSE,
#' x_lab = c("depth (m)"),
#' y_lab = c("frequency cycle/metre"),
#' plot_res = 1,
#' perc_vis = 0.5,
#' freq_max = 5,
#' freq_min = 0.001,
#' palette_name ="rainbow",
#' color_brewer= "grDevices",
#' keep_editable=FALSE,
#' verbose=FALSE,
#' dev_new=FALSE)
#'}
#'
#' @return
#'Returns a list which contains 10 elements
#'element 1: Amplitude matrix
#'element 2: Power matrix
#'element 3: Phase matrix
#'element 4: AR1_CL matrix
#'element 5: AR1_Fit matrix
#'element 6: AR1_90_power matrix
#'element 7: AR1_95_power matrix
#'element 8: AR1_99_power matrix
#'element 9: depth
#'element 10: y_axis
#'If genplot is \code{Default=TRUE} then a plot of one of the elements 1:8 is plotted
#'
#' @export
#' @importFrom Matrix rowMeans
#' @importFrom stats quantile
#' @importFrom parallel detectCores
#' @importFrom parallel makeCluster
#' @importFrom doSNOW registerDoSNOW
#' @importFrom utils txtProgressBar
#' @importFrom utils setTxtProgressBar
#' @importFrom tcltk setTkProgressBar
#' @importFrom tcltk setTkProgressBar
#' @importFrom foreach foreach
#' @importFrom stats runif
#' @importFrom stats sd
#' @importFrom stats lm
#' @importFrom graphics par
#' @importFrom graphics image
#' @importFrom graphics axis
#' @importFrom graphics mtext
#' @importFrom graphics text
#' @importFrom graphics box
#' @importFrom graphics polygon
#' @importFrom grDevices rgb
#' @importFrom foreach %dopar%
#' @importFrom graphics layout
#' @importFrom parallel stopCluster
#' @importFrom colorednoise autocorrelation
#' @importFrom colorednoise colored_noise
#' @importFrom stats cor
#' @importFrom stats pchisq
#' @importFrom stats qchisq
#' @importFrom astrochron periodogram
#' @importFrom RColorBrewer brewer.pal.info
#' @importFrom RColorBrewer brewer.pal
#' @importFrom grDevices colorRampPalette
#' @importFrom colorRamps blue2green
#' @importFrom colorRamps blue2green2red
#' @importFrom colorRamps blue2red
#' @importFrom colorRamps blue2yellow
#' @importFrom colorRamps cyan2yellow
#' @importFrom colorRamps green2red
#' @importFrom colorRamps magenta2green
#' @importFrom colorRamps matlab.like
#' @importFrom colorRamps matlab.like2
#' @importFrom colorRamps ygobb
#' @importFrom viridis viridis
#' @importFrom viridis magma
#' @importFrom viridis plasma
#' @importFrom viridis inferno
#' @importFrom viridis cividis
#' @importFrom viridis mako
#' @importFrom viridis rocket
#' @importFrom viridis turbo
#' @importFrom grDevices rainbow
#' @importFrom grDevices heat.colors
#' @importFrom grDevices terrain.colors
#' @importFrom grDevices topo.colors
#' @importFrom grDevices cm.colors
#' @importFrom grDevices hcl.colors
win_fft <- function(data = NULL,
padfac = 5,
window_size = NULL,
run_multicore = FALSE,
genplot = FALSE,
x_lab = c("depth (m)"),
y_lab = c("frequency cycle/metre"),
plot_res = 1,
perc_vis = 0,
freq_max = NULL,
freq_min = NULL,
palette_name ="rainbow",
color_brewer= "grDevices",
keep_editable = FALSE,
verbose=FALSE,
dev_new=FALSE) {
n.levels = 100
dat <- data
dat <- na.omit(dat)
d <- data.frame(dat)
dt <- d[2, 1] - d[1, 1]
Nyq <- 1 / (2 * dt)
xmax <- Nyq
timesteps_data <- round(((window_size / dt) / 2), 0)
phi_x_up <- autocorrelation(dat[1:timesteps_data, 2])
if (phi_x_up >= 1) {
phi_x_up <- 0.99
}
x_up <- colorednoise::colored_noise(
timesteps = timesteps_data,
mean = mean(dat[1:timesteps_data, 2]),
sd = sd(dat[1:timesteps_data, 2]),
phi = phi_x_up
)
phi_x_down <-
autocorrelation(dat[(nrow(dat) - timesteps_data):nrow(dat), 2])
if (phi_x_down >= 1) {
phi_x_down <- 0.99
}
x_down <- colorednoise::colored_noise(
timesteps = timesteps_data,
mean = mean(dat[(nrow(dat) - timesteps_data):nrow(dat), 2]),
sd = sd(dat[(nrow(dat) - timesteps_data):nrow(dat), 2]),
phi = phi_x_down
)
depth_up <-
sort(seq(
from = d[1, 1] - dt,
by = -dt,
length.out = timesteps_data
))
depth_down <-
seq(from = (d[nrow(d), 1] + dt),
by = dt,
length.out = timesteps_data)
colnames(d) <- c("a", "b")
pad_up <- cbind(depth_up, x_up)
colnames(pad_up) <- c("a", "b")
pad_down <- cbind(depth_down, x_down)
colnames(pad_down) <- c("a", "b")
d <- rbind(pad_up, d, pad_down)
if (run_multicore == TRUE) {
numCores <- detectCores()
cl <- parallel::makeCluster(numCores - 2)
registerDoSNOW(cl)
} else{
numCores <- 1
cl <- makeCluster(numCores)
registerDoSNOW(cl)
}
simulations <- nrow(dat)
if (verbose==TRUE){
pb <- txtProgressBar(max = simulations, style = 3)
progress <- function(n)
setTxtProgressBar(pb, n)
opts <- list(progress = progress)}else{opts=NULL}
i <- 1 # needed to assign 1 to ijk to avoid note
npts <- round(((window_size / dt)), 0)
fit <- foreach (i = 1:simulations, .options.snow = opts) %dopar% {
d_subsel <- d[i:(i + (window_size / dt - 1)),]
demean = TRUE
if (demean == TRUE) {
dave <- colMeans(d_subsel[2])
d_subsel[2] <- d_subsel[2] - dave
}
Nyq <- 1 / (2 * dt)
Ray <- 1 / (npts * dt)
pad <- as.numeric(d_subsel[, 2])
if (padfac > 1)
pad <- append(pad, rep(0, (npts * padfac - npts)))
if ((npts * padfac) %% 2 != 0)
pad <- append(pad, 0)
nf = length(pad)
df <- 1 / (nf * dt)
freq <- double(nf)
ijk <- seq(1, nf, by = 1)
ft <- fft(pad)
nrm = 1
if (nrm == 1)
ft = ft / npts
pwr <- Mod(ft) ^ 2
amp <- sqrt(pwr)
phase <- atan2(Im(ft), Re(ft))
freq <- df * (ijk - 1)
fft.out <- data.frame(cbind(freq, amp, pwr, phase))
fft.out <- fft.out[fft.out[, 1] <= Nyq ,]
fft.out <- fft.out[fft.out[, 1] > 0,]
colnames(fft.out) <- c("Frequency", "Amplitude", "Power",
"Phase")
lag0 <- d[1:(npts - 1), 2]
lag1 <- d[2:npts, 2]
rho <- cor(lag0, lag1)
So = mean(fft.out[, 3])
AR = So * (1 - (rho ^ 2)) / (1 - (2 * rho * cos(pi * fft.out[,
1] / Nyq)) + (rho ^
2))
dofAR = 2
chiAR <- (fft.out[, 3] / AR) * dofAR
chiCLAR <- pchisq(chiAR, df = dofAR)
AR1_90 <- AR * qchisq(0.9, df = dofAR) / dofAR
AR1_95 <- AR * qchisq(0.95, df = dofAR) / dofAR
AR1_99 <- AR * qchisq(0.99, df = dofAR) / dofAR
fft.out <- data.frame(
cbind(
fft.out[, 1],
fft.out[,
2],
fft.out[, 3],
fft.out[, 4],
chiCLAR * 100,
AR,
AR1_90,
AR1_95,
AR1_99
)
)
colnames(fft.out) <- c(
"Frequency",
"Amplitude",
"Power",
"Phase",
"AR1_CL",
"AR1_Fit",
"AR1_90_power",
"AR1_95_power",
"AR1_99_power"
)
return(fft.out)
}
stopCluster(cl)
fit2 <- fit
Amplitude_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
Power_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
Phase_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
AR1_CL_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
AR1_Fit_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
AR1_90_power_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
AR1_95_power_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
AR1_99_power_mat <-
matrix(data = NA,
ncol = nrow(dat),
nrow = nrow(fit2[[1]]))
for (kk in 1:length(fit2)) {
extract <- as.data.frame(fit2[[kk]])
Amplitude_mat[, kk] <- extract[, 2]
Power_mat[, kk] <- extract[, 3]
Phase_mat[, kk] <- extract[, 4]
AR1_CL_mat[, kk] <- extract[, 5]
AR1_Fit_mat[, kk] <- extract[, 6]
AR1_90_power_mat[, kk] <- extract[, 7]
AR1_95_power_mat[, kk] <- extract[, 8]
AR1_99_power_mat[, kk] <- extract[, 9]
}
depth <- (dat[, 1])
y_axis <- unlist(fit2[[kk]][1])
results <- list(
Amplitude_mat = Amplitude_mat,
Power_mat = Power_mat,
Phase_mat = Phase_mat,
AR1_CL_mat = AR1_CL_mat,
AR1_Fit_mat = AR1_Fit_mat,
AR1_90_power_mat = AR1_90_power_mat,
AR1_95_power_mat = AR1_95_power_mat,
AR1_99_power_mat = AR1_99_power_mat,
depth = dat[, 1],
y_axis = unlist(fit2[[kk]][1])
)
if (genplot == TRUE) {
y_axis <- as.numeric(unlist(results$y_axis))
sel_cols_up <- max(which(y_axis < freq_max))
sel_cols_down <- min(which(y_axis > freq_min))
bottom_perc <- perc_vis
pmax_avg_sel <- t(results[[plot_res]])
pmax_avg_sel <- pmax_avg_sel[, sel_cols_down:sel_cols_up]
if(dev_new==TRUE){
dev.new(width = 14, height = 7)}
if (keep_editable == FALSE) {
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
}
layout.matrix <- matrix(c(3, 1, 2), nrow = 1, ncol = 3)
layout(
mat = layout.matrix,
heights = c(1, 1, 1),
# Heights of the two rows
widths = c(8, 2, 2)
)
par(mar = c(4, 4, 2, 3))
power_max_mat.levels = quantile(pmax_avg_sel,
probs = seq(
from = bottom_perc,
to = 1,
length.out = n.levels + 1
))
image.plt = par()$plt
if (color_brewer== "RColorBrewer"){
key.cols <- rev(colorRampPalette(brewer.pal(brewer.pal.info[palette_name,1],palette_name))(n.levels))
}
if (color_brewer== "colorRamps"){
color_brewer_Sel <- paste("colorRamps::",palette_name,"(n=n.levels)")
key.cols = eval(parse(text = color_brewer_Sel))
}
if (color_brewer == "grDevices"){
if (palette_name == "rainbow"){
color_brewer_Sel <- "grDevices::rainbow(n=n.levels, start = 0, end = 0.7)"
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else if (palette_name == "heat.colors"|
palette_name == "terrain.colors"|
palette_name == "topo.colors"|
palette_name == "cm.colors"){
color_brewer_Sel <- paste("grDevices::",palette_name,"(n=n.levels, start = 0, end = 1)")
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else{
key.cols <- hcl.colors(n=n.levels, palette = palette_name, alpha = NULL, rev = FALSE, fixup = TRUE)}}
if (color_brewer== "viridis"){
color_brewer_Sel <- paste("viridis::",palette_name,"(n=n.levels,direction = -1)")
key.cols = rev(eval(parse(text = color_brewer_Sel)))
}
depth <- results$depth
y_axis <- results$y_axis
depth <- as.numeric(depth)
y_axis <- as.numeric(y_axis)
y_axis <- y_axis[sel_cols_down:sel_cols_up]
r_sum <- colMeans(pmax_avg_sel)
plot(
y = y_axis,
x = r_sum,
type = "l",
ylim = c(min(y_axis), max(y_axis)),
yaxs = "i",
xlab = "mean valure",
ylab = y_lab
)
lwd.axis = 1
n.ticks = 6
label.digits = 3
label.format = "f"
width = 1.2
lab.line = 2.5
lab = NULL
key.marks = round(seq(
from = 0,
to = 1,
length.out = n.ticks
) *
n.levels)
key.labels = formatC(as.numeric(power_max_mat.levels),
digits = label.digits,
format = label.format)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(power_max_mat.levels,
nrow = 1),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
box(lwd = lwd.axis)
image(
x = depth,
y = y_axis,
z = (pmax_avg_sel),
col = key.cols,
breaks = power_max_mat.levels,
xlab = x_lab,
ylab = y_lab,
useRaster = TRUE
)
}
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.