Nothing
#' model58
#'
#' power analysis of model 58 in Introduction to Mediation, Moderation, and Conditional Process Analysis
#'
#' @param c1 regression coefficient of outcome (m) on moderator (w)
#' @param a1 regression coefficient of mediator (m) on predictor (x)
#' @param c2 regression coefficient of outcome (m) on the product (xw)
#' @param d1 regression coefficient of outcome (y) on moderator (w)
#' @param b1 regression coefficient of outcome (y) on mediator (m)
#' @param b2 regression coefficient of outcome (y) on the product (mw)
#' @param cp regression coefficient of outcome (y) on predictor (x)
#' @param sigx2 variance of predictor (x)
#' @param sigw2 variance of moderator (w)
#' @param sige12 variance of error in the first regression equation
#' @param sige22 variance of error in the second regression equation
#' @param sigx_w covariance between predictor (x) and moderator (w)
#' @param n sample size
#' @param nrep number of replications for finding power
#' @param alpha type 1 error rate
#' @param b number of bootstrap iterations used when simulation method is "percentile"
#' @param MCrep number of repetitions used for finding distribution when simulation method is "MC"
#' @param nb bootstrap sample size, default to n, used when simulation method is "percentile"
#' @param w_value moderator level
#' @param power_method "product" for using the indirect effect value in power calculation, or "joint" for using joint significance in power calculation
#' @param simulation_method "percentile" for using percentile bootstrap CI in finding significance of mediation, or "MC" for using Monte Carlo CI in finding significance of mediation
#' @param ncore number of cores to use, default is 1, when ncore > 1, parallel is used
#' @param pop.cov covariance matrix, default to NULL if using the regression coefficient approach
#' @param mu mean vector, default to NULL if using the regression coefficient approach
#' @param varnames name of variables for the covariance matrix
#' @return power of indirect effect, direct effect, and moderation
#' @export
#' @examples
#' test = wp.modmed.m58(c1 = 0.2, a1 = 0.2, c2 = 0.1, b2 = 0.1,
#' b1 = 0.2, cp = 0.2, d1 = 0.2, w_value = 0.3, simulation_method = "MC",
#' sigx2 = 1, sigw2 = 1, sige12 = 1, sige22 = 1, sigx_w = 0.5,
#' n = 50, nrep = 1000, alpha = 0.05, ncore = 1)
#' print(test)
wp.modmed.m58 <- function(c1, a1, c2, d1, b1, b2, cp, sige12, sige22, sigx_w, n,
sigx2 = 1, sigw2 = 1,
nrep = 1000, alpha = 0.05, b = 1000, nb = n,
w_value = 0, power_method = "product", MCrep = 1000,
ncore = 1, simulation_method = "percentile",
pop.cov = NULL, mu = NULL, varnames = c('x', 'w', 'm', 'xw', 'mw', 'y'))
{
if (is.null(pop.cov) || is.null(mu)){
sigx_m = a1*sigx2 + c1*sigx_w
sigx_mw = c2*(1 + 2*sigx_w^2 / sigx2 / sigw2)*sigx2*sigw2
sigx_y = d1*sigx_w + cp*sigx2 + b1*sigx_m + b2*sigx_mw
sigx_xw = sigw_xw = 0
sigw2 = sigw2
sigw_m = a1*sigx_w + c1*sigw2
sigw_mw = 3*c2*sigx_w / sqrt(sigx2) / sqrt(sigw2)*sqrt(sigx2)*(sqrt(sigw2))^3
sigw_y = d1*sigw2 + cp*sigx_w + b1*sigw_m + b2*sigw_mw
sigxw2 = sigx2*sigw2 + sigx_w^2
sigxw_w2 = 3*sigx_w*sigw2 - sigx_w*sigw2
sigm2 = a1^2*sigx2 + c1^2*sigw2 + c2^2*sigxw2 + sige12 +
2*a1*c1*sigx_w
sigm_xw = c2*sigxw2
sigm_mw = a1*c2*(sigx2*sigw2 + 2*sigx_w^2) + 3*c1*c2*sigx_w*sigw2 + c2*a1*sigxw2 + c2*c1*sigxw_w2
sigm_y = (d1 + c1*b1)*sigw_m + (cp + a1*b1)*sigx_m + b1*c2*sigm_xw + b2*sigm_mw + b1*sige12
sigxw_mw = a1*sigxw2 + c1*(3*sigx_w*sigw2 - sigx_w*sigw2)
sigxw_y = (d1 + c1*b1)*sigw_xw + (cp + a1*b1)*sigx_xw + b1*c2*sigxw2 + b2*sigxw_mw
sigxw22 = 3*sigx2*sigw2^2 - 3*sigx_w^2*sigw2 + 15*sigx_w^2*sigw2
sige1w2 = sige12*sigw2
sigmw2 = a1^2*sigxw2 + 2*c1^2*sigw2^2 + c2^2*sigxw22 + sige1w2 + 2*a1*c1*sigxw_w2
sigmw_y = (d1 + c1*b1)*sigw_mw + (cp + a1*b1)*sigx_mw + b1*c2*sigxw_mw + b2*sigmw2
sigy2 = (d1 + c1*b1)^2*sigw2 + (cp + a1*b1)^2*sigx2 + (b1*c2)^2*sigxw2 + b2^2*sigmw2 + b1^2*sige12 + sige22 + 2*(d1 + c1*b1)*(cp + a1*b1)*sigx_w + 2*(d1 + c1*b1)*b1*c2*sigw_xw + 2*(d1 + c1*b1)*b2*sigw_mw + 2*(cp + a1*b1)*b2*sigx_mw + 2*b1*c2*b2*sigxw_mw
pop.cov=array(c(sigx2, sigx_w, sigx_m, sigx_xw, sigx_mw, sigx_y, 0, 0,
sigx_w, sigw2, sigw_m, sigw_xw, sigw_mw, sigw_y, 0, 0,
sigx_m, sigw_m, sigm2, sigm_xw, sigm_mw, sigm_y, sige12, 0,
sigx_xw, sigw_xw, sigm_xw, sigxw2, sigxw_mw, sigxw_y, 0, 0,
sigx_mw, sigw_mw, sigm_mw, sigxw_mw, sigmw2, sigmw_y, 0, 0,
sigx_y, sigw_y, sigm_y, sigxw_y, sigmw_y, sigy2, b1*sige12, sige22,
0, 0, sige12, 0, 0, b1*sige12, sige12, 0,
0, 0, 0, 0, 0, sige22, 0, sige22), dim=c(8, 8))
pop.cov = pop.cov[1:6, 1:6]
u_xw = sigx_w
u_m = c2*u_xw
u_mw = a1*u_xw + c1*sigw2
u_y = b1*u_m + b2*u_mw
mu = c(0, 0, u_m, u_xw, u_mw, u_y)
rownames(pop.cov) = colnames(pop.cov) = c('x', 'w', 'm', 'xw', 'mw', 'y')
}else{
pop.cov = pop.cov
mu = mu
colnames(pop.cov) = varnames
}
## conduct the analysis once
##bootstrap sampling
runonce <- function(i){
if (simulation_method == "percentile"){
simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
simdata <- as.data.frame(simdata)
test_a <- lm(m ~ x + w + xw, data = simdata)
test_b <- lm(y ~ x + m + w + mw, data = simdata)
bootstrap = function(i){
boot_dataint = sample.int(n, nb, replace = T)
boot_data = simdata[boot_dataint, ]
test_boot1 = lm(m ~ x + w + xw, data = boot_data)
test_boot2 = lm(y ~ x + m + w + mw, data = boot_data)
boot_CI = (test_boot1$coefficients[2] + test_boot1$coefficients[4]*w_value)*(test_boot2$coefficients[3] + test_boot2$coefficients[5]*w_value)
boot_CI1 = (test_boot1$coefficients[2] + test_boot1$coefficients[4]*w_value)
boot_CI2 = (test_boot2$coefficients[3] + test_boot2$coefficients[5]*w_value)
boot_DI = test_boot2$coefficients[2]
boot_c2 = test_boot1$coefficients[4]
boot_b2 = test_boot2$coefficients[5]
return(list(boot_CI, boot_DI, boot_c2, boot_b2, boot_CI1, boot_CI2))
}
boot_effect = lapply(1:b, bootstrap)
boot_CI = matrix(0, ncol = 1, nrow = b)
boot_CI1 = matrix(0, ncol = 1, nrow = b)
boot_CI2 = matrix(0, ncol = 1, nrow = b)
boot_DI = matrix(0, ncol = 1, nrow = b)
boot_c2 = matrix(0, ncol = 1, nrow = b)
boot_b2 = matrix(0, ncol = 1, nrow = b)
boot_CI = t(sapply(1:b,function(i) unlist(boot_effect[[i]][1])))
boot_DI = as.matrix(sapply(1:b,function(i) unlist(boot_effect[[i]][2])))
boot_c2 = as.matrix(sapply(1:b,function(i) unlist(boot_effect[[i]][3])))
boot_b2 = as.matrix(sapply(1:b,function(i) unlist(boot_effect[[i]][4])))
boot_CI1 = t(sapply(1:b,function(i) unlist(boot_effect[[i]][5])))
boot_CI2 = t(sapply(1:b,function(i) unlist(boot_effect[[i]][6])))
interval_CI = matrix(0, ncol = 1, nrow = 2)
interval_DI = matrix(0, ncol = 1, nrow = 2)
interval_c2 = matrix(0, ncol = 1, nrow = 2)
interval_b2 = matrix(0, ncol = 1, nrow = 2)
interval_CI1 = matrix(0, ncol = 1, nrow = 2)
interval_CI2 = matrix(0, ncol = 1, nrow = 2)
interval_CI[, 1] = quantile(boot_CI,
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
interval_CI1[, 1] = quantile(boot_CI1,
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
interval_CI2[, 1] = quantile(boot_CI2,
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
interval_DI[, 1] = quantile(boot_DI[, 1],
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
interval_c2[, 1] = quantile(boot_c2[, 1],
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
interval_b2[, 1] = quantile(boot_b2[, 1],
probs = c(alpha / 2, 1 - alpha / 2),
names = T)
r_CI = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_CI[1,i],interval_CI[2,i])))
r_DI = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_DI[1,i],interval_DI[2,i])))
r_c2 = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_c2[1,i],interval_c2[2,i])))
r_b2 = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_b2[1,i],interval_b2[2,i])))
if (power_method == "joint"){
r_CI = as.numeric(!dplyr::between(0,interval_CI1[1,1], interval_CI1[2,1]))*as.numeric(!dplyr::between(0, interval_CI2[1,1], interval_CI2[2,1]))
}
}else if (simulation_method == "MC"){
simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
simdata <- as.data.frame(simdata)
test_a <- lm(m ~ x + w + xw, data = simdata)
test_b <- lm(y ~ x + m + w + mw, data = simdata)
a1_mean <- summary(test_a)$coefficients[2, 1]
c1_mean <- summary(test_a)$coefficients[3, 1]
c2_mean <- summary(test_a)$coefficients[4, 1]
cp_mean <- summary(test_b)$coefficients[2, 1]
b1_mean <- summary(test_b)$coefficients[3, 1]
d1_mean <- summary(test_b)$coefficients[4, 1]
b2_mean <- summary(test_b)$coefficients[5, 1]
a1_se <- summary(test_a)$coefficients[2, 2]
c1_se <- summary(test_a)$coefficients[3, 2]
c2_se <- summary(test_a)$coefficients[4, 2]
cp_se <- summary(test_b)$coefficients[2, 2]
b1_se <- summary(test_b)$coefficients[3, 2]
d1_se <- summary(test_b)$coefficients[4, 2]
b2_se <- summary(test_b)$coefficients[5, 2]
path1_dist <- rnorm(MCrep, a1_mean, a1_se) + rnorm(MCrep, c2_mean, c2_se)*w_value
path2_dist <- rnorm(MCrep, b1_mean, b1_se) + rnorm(MCrep, b2_mean, b2_se)*w_value
med_dist <- path1_dist*path2_dist
c2_dist <- rnorm(MCrep, c2_mean, c2_se)
b2_dist <- rnorm(MCrep, b2_mean, b2_se)
cp_dist <- rnorm(MCrep, cp_mean, cp_se)
path1_interval <- quantile(path1_dist, probs = c(alpha / 2, 1 - alpha / 2))
path2_interval <- quantile(path2_dist, probs = c(alpha / 2, 1 - alpha / 2))
med_interval <- quantile(med_dist, probs = c(alpha / 2, 1 - alpha / 2))
c2_interval <- quantile(c2_dist, probs = c(alpha / 2, 1 - alpha / 2))
b2_interval <- quantile(b2_dist, probs = c(alpha / 2, 1 - alpha / 2))
cp_interval <- quantile(cp_dist, probs = c(alpha / 2, 1 - alpha / 2))
r_CI = as.numeric(!dplyr::between(0, med_interval[1], med_interval[2]))
r_DI = as.numeric(!dplyr::between(0, cp_interval[1], cp_interval[2]))
r_c2 = as.numeric(!dplyr::between(0, c2_interval[1], c2_interval[2]))
r_b2 = as.numeric(!dplyr::between(0, b2_interval[1], b2_interval[2]))
if (power_method == "joint") {
r_CI = as.numeric(!dplyr::between(0, path1_interval[1], path1_interval[2]))*as.numeric(!dplyr::between(0, path2_interval[1], path2_interval[2]))
}
}
power = c(r_CI, r_DI, r_c2, r_b2)
return(power)
}
if (ncore > 1){
CL1 = parallel::makeCluster(ncore)
parallel::clusterExport(CL1,c('c1', 'a1', 'c2', 'b2', 'b1', 'cp', 'd1',
'sigx2', 'sigw2', 'sige12', 'sige22', 'sigx_w',
'n', 'nrep', 'alpha','b','nb','pop.cov',
'mu', 'method', 'w_value'),envir = environment())
allsim <- parallel::parLapply(CL1, 1:nrep, runonce)
parallel::clusterExport(CL1, 'allsim', envir = environment())
allsim1 = t(parallel::parSapply(CL1, 1:nrep, function(i) unlist(allsim[[i]])))
power <- colMeans(allsim1)
parallel::stopCluster(CL1)
}else{
allsim <- sapply(1:nrep, runonce)
power <- colMeans(t(allsim))
}
power.structure=structure(list(n = n,
alpha = alpha,
samples = nrep,
w = w_value,
power1 = power[1],
power2 = power[2],
power3 = power[3],
power4 = power[4],
method = "moderated mediation model 58",
url = "https://webpower.psychstat.org/models/modmed58/",
note="power1 is the power of the conditional indirect effect of x on y through m.
power2 is the power of the direct effect of x on y.
power3 is the power of moderation on the path x to m.
power4 is the power of moderation on the path m to y."), class = "webpower")
return(power.structure)
}
# test = wp.modmed.m58(c1 = 0.2, a1 = 0.2, c2 = 0.1, b2 = 0.1,
# b1 = 0.2, cp = 0.2, d1 = 0.2, w_value = 0.3, simulation_method = "MC",
# sigx2 = 1, sigw2 = 1, sige12 = 1, sige22 = 1, sigx_w = 0.5,
# n = 50, nrep = 1000, alpha = 0.05, ncore = 1)
# print(test)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.