R/model7.R

#' model7
#'
#' power analysis of model 7 in Introduction to Mediation, Moderation, and Conditional Process Analysis
#'
#' @param a1 regression coefficient of mediator (m) on predictor (x)
#' @param cp regression coefficient of outcome (y) on predictor (x)
#' @param b1 regression coefficient of outcome (y) on mediator (m)
#' @param c1 regression coefficient of mediator (m) on moderator (w)
#' @param c2 regression coefficient of mediator (m) on the product (xw)
#' @param sigx2 variance of predictor (x)
#' @param sigw2 variance of moderator (w)
#' @param sige12 variance of error in the first regression equation
#' @param sige22 variance of error in the second regression equation
#' @param sigx_w covariance between predictor (x) and moderator (w)
#' @param n sample size
#' @param nrep number of replications for finding power
#' @param alpha type 1 error rate
#' @param b number of bootstrap iterations used when simulation method is "percentile"
#' @param MCrep number of repetitions used for finding distribution when simulation method is "MC"
#' @param nb bootstrap sample size, default to n, used when simulation method is "percentile"
#' @param w_value moderator level
#' @param power_method "product" for using the indirect effect value in power calculation, or "joint" for using joint significance in power calculation
#' @param simulation_method "percentile" for using percentile bootstrap CI in finding significance of mediation, or "MC" for using Monte Carlo CI in finding significance of mediation
#' @param ncore number of cores to use, default is 1, when ncore > 1, parallel is used
#' @param pop.cov covariance matrix, default to NULL if using the regression coefficient approach
#' @param mu mean vector, default to NULL if using the regression coefficient approach
#' @param varnames name of variables for the covariance matrix
#' @return power of indirect effect, direct effect, and moderation
#' @export
#' @examples
#' # usage of wp.modmed.m7
#' test = wp.modmed.m7(a1 = 0.39, cp = 0.2, b1 = 0.3, c1 = 0.39,
#'           c2 = 0.2, sigx2 = 1, sigw2 = 1, sige12 = 1,
#'          sige22 = 1, sigx_w = 0.5, n = 50, nrep = 1000, simulation_method = "MC",
#'          alpha = 0.05, MCrep = 1000, ncore = 1)
#' print(test)
wp.modmed.m7 <- function (a1, cp, b1, c1, c2, sige12, sige22, sigx_w, n,
                  sigx2 = 1, sigw2 = 1, nrep = 1000,
                  alpha = 0.05, b = 1000, nb = n, w_value = 0, 
                  power_method="product",
                  simulation_method = "percentile",
                  MCrep = 1000, ncore = 1, pop.cov = NULL, mu = NULL,
                  varnames = c('y', 'x', 'w', 'm', 'xw'))
{

  if (is.null(pop.cov) || is.null(mu)){
    sigxw2 = sigx2*sigw2 + sigx_w^2
    sigm_x = a1*sigx2 + c1*sigx_w
    sigm_w = a1*sigx_w + c1*sigw2
    sigm_xw = c2*sigxw2
    sigm2 = a1^2*sigx2 + c1^2*sigw2 + c2^2*sigxw2 + sige12 + 2*a1*c1*sigx_w
    sigy_x = (cp + b1*a1)*sigx2 + b1*c1*sigx_w
    sigy_w = (cp + b1*a1)*sigx_w + b1*c1*sigw2
    sigy_xw = b1*c2*sigxw2
    sigy_m = cp*sigm_x + b1*sigm2
    sigy2 = (cp + b1*a1)^2*sigx2 + b1^2*c1^2*sigw2 + b1^2*c2^2*sigxw2 + b1^2*sige12 + sige22 + 2*b1*c1*(cp + b1*a1)*sigx_w

    pop.cov = array(c(sigy2, sigy_x, sigy_w, sigy_m, sigy_xw, b1*sige12,sige22,
                    sigy_x, sigx2, sigx_w, sigm_x, 0, 0, 0,
                    sigy_w, sigx_w, sigw2, sigm_w, 0, 0, 0,
                    sigy_m, sigm_x, sigm_w, sigm2, sigm_xw, sige12, 0,
                    sigy_xw, 0, 0, sigm_xw, sigxw2, 0, 0,
                    b1*sige12, 0, 0, sige12, 0, sige12, 0,
                    sige22, 0, 0, 0, 0, 0, sige22),
                    dim = c(7, 7))
    pop.cov = pop.cov[1:5, 1:5]
    colnames(pop.cov) = rownames(pop.cov)=c('y','x','w','m','xw')
    # means
    u_xw = sigx_w
    u_m = c2*u_xw
    u_y = b1*u_m
    mu = c(u_y, 0, 0, u_m, u_xw)
  }else{
    pop.cov = pop.cov
    mu = mu
    colnames(pop.cov) = varnames
  }


  runonce <- function(i){
    if (simulation_method == "percentile"){
    #### percentile bootstrap

      simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
      simdata <- as.data.frame(simdata)
      test_a <- lm(m ~ x + w + xw, data = simdata)
      test_b <- lm(y ~ x + m, data = simdata)
      
      bootstrap = function(i) {
        boot_dataint = sample.int(n, nb, replace = T)
        boot_data = simdata[boot_dataint, ]
        test_boot1 = lm(m ~ x + w + xw, data = boot_data)
        test_boot2 = lm(y ~ x + m, data = boot_data)
        boot_CI = (test_boot1$coefficients[2] + test_boot1$coefficients[4] *
                     w_value) * test_boot2$coefficients[3]
        boot_DI = as.numeric(test_boot2$coefficients[2])
        boot_mod = as.numeric(test_boot1$coefficients[4])
        boot_CI1 = (test_boot1$coefficients[2] + test_boot1$coefficients[4] *
                      w_value)
        boot_CI2 = test_boot2$coefficients[3]
        return(list(boot_CI, boot_DI, boot_mod, boot_CI1, boot_CI2))
      }
      boot_effect = lapply(1:b, bootstrap)
      boot_CI = matrix(0, ncol = 1, nrow = b)
      boot_CI1 = matrix(0, ncol = 1, nrow = b)
      boot_CI2 = matrix(0, ncol = 1, nrow = b)
      boot_DI = matrix(0, ncol = 1, nrow = b)
      boot_mod = matrix(0, ncol = 1, nrow = b)
      
      boot_CI = sapply(1:b,function(i) unlist(boot_effect[[i]][1]))
      boot_DI = sapply(1:b,function(i) unlist(boot_effect[[i]][2]))
      boot_mod = sapply(1:b,function(i) unlist(boot_effect[[i]][3]))
      boot_CI1 = sapply(1:b,function(i) unlist(boot_effect[[i]][4]))
      boot_CI2 = sapply(1:b,function(i) unlist(boot_effect[[i]][5]))
      
      interval_CI = matrix(0, ncol = 1, nrow = 2)
      interval_CI1 = matrix(0, ncol = 1, nrow = 2)
      interval_CI2 = matrix(0, ncol = 1, nrow = 2)
      interval_DI = matrix(0, ncol = 1, nrow = 2)
      interval_mod = matrix(0, ncol = 1, nrow = 2)
      
      interval_CI[, 1] = quantile(boot_CI,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_CI1[, 1] = quantile(boot_CI1,
                                   probs = c(alpha / 2, 1 - alpha / 2),
                                   names = T)
      interval_CI2[, 1] = quantile(boot_CI2,
                                   probs = c(alpha / 2, 1 - alpha / 2),
                                   names = T)
      interval_DI[, 1] = quantile(boot_DI,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_mod[, 1] = quantile(boot_mod,
                                   probs = c(alpha / 2, 1 - alpha / 2),
                                   names = T)
      
      r_CI = as.numeric(!dplyr::between(0, interval_CI[1, 1], interval_CI[2, 1]))
      r_DI = as.numeric(!dplyr::between(0, interval_DI[1, 1], interval_DI[2, 1]))
      r_mod = as.numeric(!dplyr::between(0, interval_mod[1, 1], interval_mod[2, 1]))
      if (power_method == "joint") {
        r_CI = as.numeric(!dplyr::between(0, interval_CI1[1, 1], interval_CI1[2, 1]))*as.numeric(!dplyr::between(0, interval_CI2[1, 1], interval_CI2[2, 1]))
      }
      
      
      
    }else if (simulation_method == "MC"){
      ### monte carlo CI
      simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
      simdata <- as.data.frame(simdata)
      test_a <- lm(m ~ x + w + xw, data = simdata)
      test_b <- lm(y ~ x + m, data = simdata)
      
      a1_mean <- summary(test_a)$coefficients[2, 1]
      c1_mean <- summary(test_a)$coefficients[3, 1]
      c2_mean <- summary(test_a)$coefficients[4, 1]
      cp_mean <- summary(test_b)$coefficients[2, 1]
      b1_mean <- summary(test_b)$coefficients[3, 1]
      
      a1_se <- summary(test_a)$coefficients[2, 2]
      c1_se <- summary(test_a)$coefficients[3, 2]
      c2_se <- summary(test_a)$coefficients[4, 2]
      cp_se <- summary(test_b)$coefficients[2, 2]
      b1_se <- summary(test_b)$coefficients[3, 2]
      
      path1_dist <- rnorm(MCrep, a1_mean, a1_se) + rnorm(MCrep, c2_mean, c2_se)*w_value
      path2_dist <- rnorm(MCrep, b1_mean, b1_se)
      med_dist <- path1_dist*path2_dist
      c2_dist <- rnorm(MCrep, c2_mean, c2_se)
      cp_dist <- rnorm(MCrep, cp_mean, cp_se)
      path1_interval <- quantile(path1_dist, probs = c(alpha / 2, 1 - alpha / 2))
      path2_interval <- quantile(path2_dist, probs = c(alpha / 2, 1 - alpha / 2))
      med_interval <- quantile(med_dist, probs = c(alpha / 2, 1 - alpha / 2))
      c2_interval <- quantile(c2_dist, probs = c(alpha / 2, 1 - alpha / 2))
      cp_interval <- quantile(cp_dist, probs = c(alpha / 2, 1 - alpha / 2))
      
      r_CI = as.numeric(!dplyr::between(0, med_interval[1], med_interval[2]))
      r_DI = as.numeric(!dplyr::between(0, cp_interval[1], cp_interval[2]))
      r_mod = as.numeric(!dplyr::between(0, c2_interval[1], c2_interval[2]))
      if (power_method == "joint") {
        r_CI = as.numeric(!dplyr::between(0, path1_interval[1], path1_interval[2]))*as.numeric(!dplyr::between(0, path2_interval[1], path2_interval[2]))
      }
  }
  
  
    power = c(r_CI, r_DI, r_mod)
    return(power)
  }
  if (ncore > 1){
    CL1 = parallel::makeCluster(ncore)
    parallel::clusterExport(CL1, c('a1', 'cp', 'b1', 'c1', 'c2',
                                   'sigx2', 'sigw2', 'sige12', 'sige22', 'sigx_w',
                                   'n', 'nrep', 'alpha', 'b', 'nb', 'pop.cov',
                                   'method', 'mu', 'w_value'), envir = environment())
    allsim <- parallel::parLapply(CL1,1:nrep, runonce)
    parallel::clusterExport(CL1, 'allsim', envir = environment())
    allsim1 = t(parallel::parSapply(CL1, 1:nrep, function(i) unlist(allsim[[i]])))
    power <- colMeans(allsim1)
    parallel::stopCluster(CL1)
  }else{
    allsim <- sapply(1:nrep,runonce)
    power <- colMeans(t(allsim))
  }

  power.structure = structure(list(n = n,
                                 alpha = alpha,
                                 samples = nrep,
                                 w = w_value,
                                 power1 = power[1],
                                 power2 = power[2],
                                 power3 = power[3],
                                 method = "moderated mediation model 7",
                                 url = "https://webpower.psychstat.org/models/modmed7/",
                 note = "power1 is the power of the conditional indirect effect of x on y through m.
power2 is the power of the direct effect of x on  y.
power3 is the power of moderation on the path x to m."), class = "webpower")
  return(power.structure)
}

# usage of wp.modmed.m7
# test = wp.modmed.m7(a1 = 0.39, cp = 0.2, b1 = 0.3, c1 = 0.39,
#           c2 = 0.2, sigx2 = 1, sigw2 = 1, sige12 = 1,
#          sige22 = 1, sigx_w = 0.5, n = 50, nrep = 100, simulation_method = "MC",
#          alpha = 0.05, MCrep = 1000, ncore = 1)
# print(test)

Try the WebPower package in your browser

Any scripts or data that you put into this service are public.

WebPower documentation built on Oct. 14, 2023, 1:06 a.m.