R/model8.R

#' model8
#'
#' power analysis of model 8 in Introduction to Mediation, Moderation, and Conditional Process Analysis
#'
#' @param a1 regression coefficient of mediator (m) on predictor (x)
#' @param cp regression coefficient of outcome (y) on predictor (x)
#' @param b1 regression coefficient of outcome (y) on mediator (m)
#' @param c1 regression coefficient of mediator (m) on moderator (w)
#' @param d1 regression coefficient of mediator (y) on moderator (w)
#' @param c2 regression coefficient of mediator (m) on the product (xw)
#' @param d2 regression coefficient of mediator (y) on the product (xw)
#' @param sigx2 variance of predictor (x)
#' @param sigw2 variance of moderator (w)
#' @param sige12 variance of error in the first regression equation
#' @param sige22 variance of error in the second regression equation
#' @param sigx_w covariance between predictor (x) and moderator (w)
#' @param n sample size
#' @param nrep number of replications for finding power
#' @param alpha type 1 error rate
#' @param b number of bootstrap iterations used when simulation method is "percentile"
#' @param MCrep number of repetitions used for finding distribution when simulation method is "MC"
#' @param nb bootstrap sample size, default to n, used when simulation method is "percentile"
#' @param w_value moderator level
#' @param power_method "product" for using the indirect effect value in power calculation, or "joint" for using joint significance in power calculation
#' @param simulation_method "percentile" for using percentile bootstrap CI in finding significance of mediation, or "MC" for using Monte Carlo CI in finding significance of mediation
#' @param ncore number of cores to use, default is 1, when ncore > 1, parallel is used
#' @param pop.cov covariance matrix, default to NULL if using the regression coefficient approach
#' @param mu mean vector, default to NULL if using the regression coefficient approach
#' @param varnames name of variables for the covariance matrix
#' @return power of indirect effect, direct effect, and moderation
#' @export
#' @examples
#' # usage of wp.modmed.m8
#' test = wp.modmed.m8(a1 = 0.2, cp = 0.2, b1 = 0.2,
#'                    c1 = 0.2, d1=0.2, c2 = 0.2, d2 = 0.2,
#'                    sigx2 = 1, sigw2 = 1, sige12 = 1, sige22 = 1, sigx_w = 0.5,
#'                    simulation_method = "MC", 
#'                    n = 50, nrep = 1000, alpha = 0.05, MCrep = 1000, ncore = 1)
#' print(test)
wp.modmed.m8 <- function (a1, cp, b1, c1, d1, c2, d2, sige12, sige22, sigx_w, n,
                  sigx2 = 1, sigw2 = 1, nrep = 1000, alpha = 0.05, b = 1000, 
                  nb = n, w_value = 0, power_method = "product",
                  simulation_method = "percentile", ncore = 1, MCrep = 1000,
                  pop.cov = NULL, mu = NULL, varnames = c('y','x','w','m','xw')){

  if (is.null(pop.cov) || is.null(mu)){
    sigxw2 = sigx2*sigw2 + sigx_w^2
    sigm_xw = c2*sigxw2
    sigy_xw = (b1*c2 + d2)*sigxw2
    sigm_x = c1*sigx_w + a1*sigx2
    sigm_w = a1*sigx_w + c1*sigw2
    sigy_x = (d1 + c1*b1)*sigx_w + (cp + a1*b1)*sigx2
    sigy_w = (d1+c1*b1)*sigw2 + (cp + a1*b1)*sigx_w
    sigy2 = (d1 + c1*b1)^2*sigw2 + (cp + a1*b1)^2*sigx2 + b1^2*sige12 +
      (b1*c2 + d2)^2*sigxw2 + sige22 + 2*(d1 + c1*b1)*(cp + a1*b1)*sigx_w
    sigm2 = a1^2*sigx2 + c1^2*sigw2 + c2^2*sigxw2 + sige12 + 2*a1*c1*sigx_w
    sigy_m = d1*sigm_w + cp*sigm_x + b1*sigm2 + d2*sigm_xw
    pop.cov = array(c(sigy2, sigy_x, sigy_w, sigy_m, sigy_xw, cp*sige12, sige22,
                      sigy_x, sigx2, sigx_w, sigm_x, 0, 0, 0,
                      sigy_w, sigx_w, sigw2, sigm_w, 0, 0, 0,
                      sigy_m, sigm_x, sigm_w, sigm2, sigm_xw, sige12, 0,
                      sigy_xw, 0, 0, sigm_xw, sigxw2, 0, 0,
                      cp*sige12, 0, 0, sige12, 0, sige12, 0,
                      sige22, 0, 0, 0, 0, 0, sige22),
                    dim = c(7, 7))
    pop.cov = pop.cov[1:5,1:5]
    u_xw = sigx_w
    u_m = c2*u_xw
    u_y = cp*u_m + d2*u_xw
    colnames(pop.cov) = rownames(pop.cov) = c('y','x','w','m','xw')
    mu = c(u_y, 0, 0, u_m, u_xw)
  }else{
    pop.cov = pop.cov
    mu = mu
    colnames(pop.cov) = varnames
  }
  
  
  runonce <- function(i){
    if (simulation_method == "percentile"){
      simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
      simdata <- as.data.frame(simdata)
      test_a <- lm(m ~ x + w + xw, data = simdata)
      test_b <- lm(y ~ x + m + w + xw, data = simdata)
      
      bootstrap=function(i){
        boot_dataint = sample.int(n, nb, replace = T)
        boot_data = simdata[boot_dataint,]
        test_boot1 = lm(m ~ x + w + xw,data = boot_data)
        test_boot2 = lm(y ~ x + m + w + xw,data = boot_data)
        boot_CI = (test_boot1$coefficients[2] + test_boot1$coefficients[4]*w_value)*test_boot2$coefficients[3]
        boot_CD = test_boot2$coefficients[2] + test_boot2$coefficients[5]*w_value
        boot_c2 = as.numeric(test_boot1$coefficients[4])
        boot_d2 = as.numeric(test_boot2$coefficients[5])
        boot_CI1 = (test_boot1$coefficients[2] + test_boot1$coefficients[4]*w_value)
        boot_CI2 = test_boot2$coefficients[3]
        return(list(boot_CI, boot_CD, boot_c2, boot_d2, boot_CI1, boot_CI2))
      }
      boot_effect = lapply(1:b, bootstrap)
      boot_CI = matrix(0, ncol = 1, nrow = b)
      boot_CD = matrix(0, ncol = 1, nrow = b)
      boot_c2 = matrix(0, ncol = 1, nrow = b)
      boot_d2 = matrix(0, ncol = 1, nrow = b)
      boot_CI1 = matrix(0, ncol = 1, nrow = b)
      boot_CI2 = matrix(0, ncol = 1, nrow = b)
      
      boot_CI = t(sapply(1:b, function(i) unlist(boot_effect[[i]][1])))
      boot_CD = t(sapply(1:b, function(i) unlist(boot_effect[[i]][2])))
      boot_c2 = t(sapply(1:b, function(i) unlist(boot_effect[[i]][3])))
      boot_d2 = t(sapply(1:b, function(i) unlist(boot_effect[[i]][4])))
      boot_CI1 = t(sapply(1:b, function(i) unlist(boot_effect[[i]][5])))
      boot_CI2 = t(sapply(1:b, function(i) unlist(boot_effect[[i]][6])))
      
      
      interval_CI = matrix(0, ncol = 1, nrow = 2)
      interval_CD = matrix(0, ncol = 1, nrow = 2)
      interval_c2 = matrix(0, ncol = 1, nrow = 2)
      interval_d2 = matrix(0, ncol = 1, nrow = 2)
      interval_CI1 = matrix(0, ncol = 1, nrow = 2)
      interval_CI2 = matrix(0, ncol = 1, nrow = 2)
      
      
      interval_CI[, 1] = quantile(boot_CI,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_CD[, 1] = quantile(boot_CD,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_c2[, 1] = quantile(boot_c2,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_d2[, 1] = quantile(boot_d2,
                                  probs = c(alpha / 2, 1 - alpha / 2),
                                  names = T)
      interval_CI1[, 1] = quantile(boot_CI1,
                                   probs = c(alpha / 2, 1 - alpha / 2),
                                   names = T)
      interval_CI2[, 1] = quantile(boot_CI2,
                                   probs = c(alpha / 2, 1 - alpha / 2),
                                   names = T)
      
      
      r_CI = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_CI[1,i], interval_CI[2,i])))
      r_DI = as.numeric(!sapply(1,function(i) dplyr::between(0,interval_CD[1,i], interval_CD[2,i])))
      r_c2 = as.numeric(!sapply(1, function(i) dplyr::between(0,interval_c2[1,i], interval_c2[2,i])))
      r_d2 = as.numeric(!sapply(1, function(i) dplyr::between(0,interval_d2[1,i], interval_d2[2,i])))
      if (power_method == "joint"){
        r_CI = as.numeric(!dplyr::between(0, interval_CI1[1,1], interval_CI1[2,1]))*as.numeric(!dplyr::between(0, interval_CI2[1,1], interval_CI2[2,1]))
      }
    }else if (simulation_method == "MC"){
      ### monte carlo CI
      simdata <- MASS::mvrnorm(n, mu = mu, Sigma = pop.cov)
      simdata <- as.data.frame(simdata)
      test_a <- lm(m ~ x + w + xw, data = simdata)
      test_b <- lm(y ~ x + m + w + xw, data = simdata)
      
      a1_mean <- summary(test_a)$coefficients[2, 1]
      c1_mean <- summary(test_a)$coefficients[3, 1]
      c2_mean <- summary(test_a)$coefficients[4, 1]
      cp_mean <- summary(test_b)$coefficients[2, 1]
      b1_mean <- summary(test_b)$coefficients[3, 1]
      d1_mean <- summary(test_b)$coefficients[4, 1]
      d2_mean <- summary(test_b)$coefficients[5, 1]
      
      a1_se <- summary(test_a)$coefficients[2, 2]
      c1_se <- summary(test_a)$coefficients[3, 2]
      c2_se <- summary(test_a)$coefficients[4, 2]
      cp_se <- summary(test_b)$coefficients[2, 2]
      b1_se <- summary(test_b)$coefficients[3, 2]
      d1_se <- summary(test_b)$coefficients[4, 2]
      d2_se <- summary(test_b)$coefficients[5, 2]
      
      path1_dist <- rnorm(MCrep, a1_mean, a1_se) + rnorm(MCrep, c2_mean, c2_se)*w_value
      path2_dist <- rnorm(MCrep, b1_mean, b1_se)
      med_dist <- path1_dist*path2_dist
      c2_dist <- rnorm(MCrep, c2_mean, c2_se)
      cp_dist <- rnorm(MCrep, cp_mean, cp_se) + w_value*rnorm(MCrep, d2_mean, d2_se)
      d2_dist <- rnorm(MCrep, d2_mean, d2_se)
      path1_interval <- quantile(path1_dist, probs = c(alpha / 2, 1 - alpha / 2))
      path2_interval <- quantile(path2_dist, probs = c(alpha / 2, 1 - alpha / 2))
      med_interval <- quantile(med_dist, probs = c(alpha / 2, 1 - alpha / 2))
      c2_interval <- quantile(c2_dist, probs = c(alpha / 2, 1 - alpha / 2))
      d2_interval <- quantile(d2_dist, probs = c(alpha / 2, 1 - alpha / 2))
      cp_interval <- quantile(cp_dist, probs = c(alpha / 2, 1 - alpha / 2))
      
      r_CI = as.numeric(!dplyr::between(0, med_interval[1], med_interval[2]))
      r_DI = as.numeric(!dplyr::between(0, cp_interval[1], cp_interval[2]))
      r_c2 = as.numeric(!dplyr::between(0, c2_interval[1], c2_interval[2]))
      r_d2 = as.numeric(!dplyr::between(0, d2_interval[1], d2_interval[2]))
      
      if (power_method == "joint") {
        r_CI = as.numeric(!dplyr::between(0, path1_interval[1], path1_interval[2]))*as.numeric(!dplyr::between(0, path2_interval[1], path2_interval[2]))
      }
    }
    
    power=c(r_CI, r_DI, r_c2, r_d2)
    return(power)
  }
  if (ncore > 1){
    CL1 = parallel::makeCluster(ncore)
    parallel::clusterExport(CL1, c('a1', 'cp', 'b1', 'c1', 'd1', 'c2','d2',
                                   'sigx2', 'sigw2', 'sige12', 'sige22', 'sigx_w',
                                   'n', 'nrep', 'alpha', 'b', 'nb', 'pop.cov',
                                   'mu', 'w_value', 'method'), envir = environment())
    allsim <- parallel::parLapply(CL1, 1:nrep, runonce)
    parallel::clusterExport(CL1, 'allsim', envir=environment())
    allsim1 = t(parallel::parSapply(CL1, 1:nrep, function(i) unlist(allsim[[i]])))
    power <- colMeans(allsim1)
    parallel::stopCluster(CL1)
  }else{
    allsim <- sapply(1:nrep, runonce)
    power <- colMeans(t(allsim))
  }
  
  power.structure = structure(list(n = n,
                                   alpha = alpha,
                                   samples = nrep,
                                   w = w_value,
                                   power1 = power[1],
                                   power2 = power[2],
                                   power3 = power[3],
                                   power4 = power[4],
                                   method = "moderated mediation model 8",
                                   url = "https://webpower.psychstat.org/models/modmed8/",
                                   note="power1 is  the power of the conditional indirect effect of x on y through m.
power2 is the power value of the conditional direct effect of x on y.
power3 is the power of moderation on the path x to m.
power4 is the power of moderation on the path x to y."), class = "webpower")
  return(power.structure)
}

# test = wp.modmed.m8(a1 = 0.2, cp = 0.2, b1 = 0.2,
#                    c1 = 0.2, d1=0.2, c2 = 0.2, d2 = 0.2,
#                    sigx2 = 1, sigw2 = 1, sige12 = 1, sige22 = 1, sigx_w = 0.5,
#                    simulation_method = "MC",
#                    n = 50, nrep = 1000, alpha = 0.05, MCrep = 1000, ncore = 1)
# print(test)

Try the WebPower package in your browser

Any scripts or data that you put into this service are public.

WebPower documentation built on Oct. 14, 2023, 1:06 a.m.