Description Usage Arguments Details Value See Also Examples
Perform best-fits of Arps decline curves to rate or cumulative data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | best.exponential(q, t,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10) # = 0.99995 / [time] effective
)
best.hyperbolic(q, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2) # b <= 2.0
)
best.hyp2exp(q, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2, # b <= 2.0
0.35) # Df <= 0.35
)
best.exponential.curtailed(q, t,
lower=c( # lower bounds
0, # qi > 0
0, # D > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
t[length(t)])
)
best.hyperbolic.curtailed(q, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0, # b > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2, # b <= 2.0
t[length(t)])
)
best.hyp2exp.curtailed(q, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0, # Df > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2, # b <= 2.0
0.35, # Df <= 0.35
t[length(t)])
)
best.fit(q, t)
best.curtailed.fit(q, t)
best.exponential.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10) # = 0.99995 / [time] effective)
)
best.exponential.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10) # = 0.99995 / [time] effective)
)
best.hyperbolic.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
2) # b <= 2.0
)
best.hyperbolic.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
2) # b <= 2.0
)
best.hyp2exp.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35) # Df <= 0.35
)
best.hyp2exp.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35) # Df <= 0.35
)
best.exponential.curtailed.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0, # D > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
t[length(t)])
)
best.exponential.curtailed.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0, # D > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
t[length(t)])
)
best.hyperbolic.curtailed.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0, # b > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
t[length(t)])
)
best.hyperbolic.curtailed.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0, # b > 0
0 # t.curtail > 0
),
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
t[length(t)])
)
best.hyp2exp.curtailed.from.Np(Np, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0, # Df > 0
0
),
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35, # Df <= 0.35
t[length(t)])
)
best.hyp2exp.curtailed.from.interval(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0, # Df > 0
0
),
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35, # Df <= 0.35
t[length(t)])
)
best.fit.from.Np(Np, t)
best.fit.from.interval(volume, t, t.begin=0.0)
best.curtailed.fit.from.Np(Np, t)
best.curtailed.fit.from.interval(volume, t, t.begin=0.0)
best.exponential.with.buildup(q, t,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10), # = 0.99995 / [time] effective
initial.rate=q[1], time.to.peak=t[which.max(q)])
best.hyperbolic.with.buildup(q, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2), # b <= 2.0
initial.rate=q[1], time.to.peak=t[which.max(q)])
best.hyp2exp.with.buildup(q, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(q) * 5, # qi < qmax * 5
10, # = 0.99995 / [time] effective
2, # b <= 2.0
0.35), # Df <= 0.35
initial.rate=q[1], time.to.peak=t[which.max(q)])
best.fit.with.buildup(q, t)
best.exponential.from.Np.with.buildup(Np, t,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10), # = 0.99995 / [time] effective
initial.rate=Np[1] / t[1],
time.to.peak=(t[which.max(diff(Np))] + t[which.max(diff(Np)) + 1]) / 2.0)
best.exponential.from.interval.with.buildup(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0), # D > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10), # = 0.99995 / [time] effective
initial.rate=volume[1] / (t[1] - t.begin),
time.to.peak=(t - diff(c(t.begin, t)) / 2)[which.max(volume)])
best.hyperbolic.from.Np.with.buildup(Np, t,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
2), # b <= 2.0
initial.rate=Np[1] / t[1],
time.to.peak=(t[which.max(diff(Np))] + t[which.max(diff(Np)) + 1]) / 2.0)
best.hyperbolic.from.interval.with.buildup(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0, # Di > 0
0), # b > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
2), # b <= 2.0
initial.rate=volume[1] / (t[1] - t.begin),
time.to.peak=(t - diff(c(t.begin, t)) / 2)[which.max(volume)])
best.hyp2exp.from.Np.with.buildup(Np, t,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(c(Np[1], diff(Np)) / diff(c(0, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35), # Df <= 0.35
initial.rate=Np[1] / t[1],
time.to.peak=(t[which.max(diff(Np))] + t[which.max(diff(Np)) + 1]) / 2.0)
best.hyp2exp.from.interval.with.buildup(volume, t, t.begin=0.0,
lower=c( # lower bounds
0, # qi > 0
0.35, # Di > 0
0, # b > 0
0), # Df > 0
upper=c( # upper bounds
max(volume / diff(c(t.begin, t))) * 5, # qi < max(rate) * 5
10, # = 0.99995 / [time] effective
5, # b <= 2.0
0.35), # Df <= 0.35
initial.rate=volume[1] / (t[1] - t.begin),
time.to.peak=(t - diff(c(t.begin, t)) / 2)[which.max(volume)])
best.fit.from.Np.with.buildup(Np, t)
best.fit.from.interval.with.buildup(volume, t, t.begin=0.0)
|
q |
vector of rate data. |
Np |
vector of cumulative production data. |
volume |
vector of interval volume data. |
t |
vector of times at which |
t.begin |
initial time for interval volume data, if non-zero. |
lower |
lower bounds for decline parameters (sane defaults are provided). |
upper |
upper bounds for decline parameters (sane defaults are provided). |
initial.rate |
initial rate, for declines with buildup. |
time.to.peak |
time to peak rate, for declines with buildup. |
Best-fitting is carried out by minimizing the sum of squared error in the
rate or cumulative forecast, using nlminb
as the optimizer.
Appropriate bounds are applied to decline-curve parameters by default, but
may be altered using the lower
and upper
arguments to each
specific function.
best.exponential
, best.hyperbolic
, and best.hyp2exp
return objects of the appropriate class (as from arps.decline
)
representing best fits of the appropriate type against q
and
t
, in the same units as q
and t
.
best.fit
returns the best overall fit, considering results from each
function above.
best.exponential.from.Np
, best.hyperbolic.from.Np
, and
best.hyp2exp.from.Np
return objects of the appropriate class (as
from arps.decline
) representing best fits of the appropriate type
against Np
and t
, in the same units as Np
and t
.
best.fit.from.Np
returns the best overall fit, considering results
from each function above.
best.exponential.from.interval
, best.hyperbolic.from.interval
,
and best.hyp2exp.from.interval
return objects of the appropriate
class (as from arps.decline
) representing best fits of the
appropriate type against volume
and t
, in the same units as
volume
and t
.
For these functions, t
is taken to represent the time at the end of
each producing interval; the beginning time for the first interval may be
specified as t.begin
if it is non-zero.
best.fit.from.interval
returns the best overall fit, considering
results from each function above.
best.exponential.curtailed
, best.hyperbolic.curtailed
,
best.hyp2exp.curtailed
, best.curtailed.fit
,
best.exponential.curtailed.from.Np
,
best.hyperbolic.curtailed.from.Np
,
best.hyp2exp.curtailed.from.Np
, best.curtailed.fit.from.Np
,
best.exponential.curtailed.from.interval
,
best.hyperbolic.curtailed.from.interval
,
best.hyp2exp.curtailed.from.interval
, and
best.curtailed.fit.from.interval
work as the corresponding functions
above, but may return curtailed declines (as from curtail
).
best.exponential.with.buildup
, best.hyperbolic.with.buildup
,
best.hyp2exp.with.buildup
, best.fit.with.buildup
,
best.exponential.from.Np.with.buildup
,
best.hyperbolic.from.Np.with.buildup
,
best.hyp2exp.from.Np.with.buildup
,
best.fit.from.Np.with.buildup
,
best.exponential.from.interval.with.buildup
,
best.hyperbolic.from.interval.with.buildup
,
best.hyp2exp.from.interval.with.buildup
, and
best.fit.from.interval.with.buildup
work as the corresponding
functions above, but will return a fit including a linear buildup
portion (as from arps.with.buildup
).
arps
, curtailed
, arps.with.buildup
,
nlminb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | fitme.hyp2exp.t <- seq(0, 5, 1 / 12) # 5 years
fitme.hyp2exp.q <- hyp2exp.q(
1000, # Bbl/d
as.nominal(0.70), # / year
1.9,
as.nominal(0.15), # / year
fitme.hyp2exp.t
) * rnorm(n=length(fitme.hyp2exp.t), mean=1, sd=0.1) # perturb
hyp2exp.fit <- best.hyp2exp(fitme.hyp2exp.q, fitme.hyp2exp.t)
cat(paste("SSE:", hyp2exp.fit$sse))
dev.new()
plot(fitme.hyp2exp.q ~ fitme.hyp2exp.t, main="Hyperbolic-to-Exponential Fit",
col="blue", log="y", xlab="Time", ylab="Rate")
lines(arps.q(hyp2exp.fit$decline, fitme.hyp2exp.t) ~ fitme.hyp2exp.t,
col="red")
legend("topright", pch=c(1, NA), lty=c(NA, 1), col=c("blue", "red"), legend=c("Actual", "Fit"))
|
SSE: 131126.214478057
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.