| Gumbel | R Documentation | 
Density function, distribution function, quantile function, random
generation and raw moments for the Gumbel extreme value distribution
with parameters alpha and scale.
dgumbel(x, alpha, scale, log = FALSE)
pgumbel(q, alpha, scale, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, alpha, scale, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, alpha, scale)
mgumbel(order, alpha, scale)
mgfgumbel(t, alpha, scale, log = FALSE)
| x,q | vector of quantiles. | 
| p | vector of probabilities. | 
| n | number of observations. If  | 
| alpha | location parameter. | 
| scale | parameter. Must be strictly positive. | 
| log,log.p | logical; if  | 
| lower.tail | logical; if  | 
| order | order of the moment. Only values  | 
| t | numeric vector. | 
The Gumbel distribution with parameters alpha =
    \alpha and scale = \theta has distribution
function:
F(x) = \exp[-\exp(-(x - \alpha)/\theta)]
for -\infty < x < \infty, -\infty < a <
    \infty and \theta > 0.
The mode of the distribution is in \alpha, the mean is
\alpha + \gamma\theta, where \gamma =
  0.57721566 is the Euler-Mascheroni constant, and the variance is
\pi^2 \theta^2/6.
dgumbel gives the density,
pgumbel gives the distribution function,
qgumbel gives the quantile function,
rgumbel generates random deviates,
mgumbel gives the kth raw moment, k = 1, 2, and
mgfgamma gives the moment generating function in t.
Invalid arguments will result in return value NaN, with a warning.
Distribution also knonw as the generalized extreme value distribution Type-I.
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Vincent Goulet vincent.goulet@act.ulaval.ca
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
dgumbel(c(-5, 0, 10, 20), 0.5, 2)
p <- (1:10)/10
pgumbel(qgumbel(p, 2, 3), 2, 3)
curve(pgumbel(x, 0.5, 2), from = -5, to = 20, col = "red")
curve(pgumbel(x, 1.0, 2), add = TRUE, col = "green")
curve(pgumbel(x, 1.5, 3), add = TRUE, col = "blue")
curve(pgumbel(x, 3.0, 4), add = TRUE, col = "cyan")
a <- 3; s <- 4
mgumbel(1, a, s)                        # mean
a - s * digamma(1)                      # same
mgumbel(2, a, s) - mgumbel(1, a, s)^2   # variance
(pi * s)^2/6                            # same
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.