| ogive | R Documentation | 
Compute a smoothed empirical distribution function for grouped data.
ogive(x, ...)
## Default S3 method:
ogive(x, y = NULL, breaks = "Sturges", nclass = NULL, ...)
## S3 method for class 'grouped.data'
ogive(x, ...)
## S3 method for class 'ogive'
print(x, digits = getOption("digits") - 2, ...)
## S3 method for class 'ogive'
summary(object, ...)
## S3 method for class 'ogive'
knots(Fn, ...)
## S3 method for class 'ogive'
plot(x, main = NULL, xlab = "x", ylab = "F(x)", ...)
| x | for the generic and all but the default method, an object of
class  | 
| y | a vector of group frequencies. | 
| breaks,nclass | arguments passed to  | 
| digits | number of significant digits to use, see
 | 
| Fn,object | an R object inheriting from  | 
| main | main title. | 
| xlab,ylab | labels of x and y axis. | 
| ... | arguments to be passed to subsequent methods. | 
The ogive is a linear interpolation of the empirical cumulative distribution function.
The equation of the ogive is
G_n(x) = \frac{(c_j - x) F_n(c_{j - 1}) +
      (x - c_{j - 1}) F_n(c_j)}{c_j - c_{j - 1}}
for c_{j-1} < x \leq c_j and where
c_0, \dots, c_r are the r + 1 group
boundaries and F_n is the empirical distribution function of
the sample.
For ogive, a function of class "ogive", inheriting from the
"function" class.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.
grouped.data to create grouped data objects;
quantile.grouped.data for the inverse function;
approxfun, which is used to compute the ogive;
stepfun for related documentation (even though the ogive
is not a step function).
## Most common usage: create ogive from grouped data object.
Fn <- ogive(gdental)
Fn
summary(Fn)
knots(Fn)                      # the group boundaries
Fn(knots(Fn))                  # true values of the empirical cdf
Fn(c(80, 200, 2000))           # linear interpolations
plot(Fn)                       # graphical representation
## Alternative 1: create ogive directly from individual data
## without first creating a grouped data object.
ogive(dental)                  # automatic class boundaries
ogive(dental, breaks = c(0, 50, 200, 500, 1500, 2000))
## Alternative 2: create ogive from set of group boundaries and
## group frequencies.
cj <- c(0, 25, 50, 100, 250, 500, 1000)
nj <- c(30, 31, 57, 42, 45, 10)
ogive(cj, nj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.