| elev | R Documentation |
Compute the empirical limited expected value for individual or grouped data.
elev(x, ...)
## Default S3 method:
elev(x, ...)
## S3 method for class 'grouped.data'
elev(x, ...)
## S3 method for class 'elev'
print(x, digits = getOption("digits") - 2, ...)
## S3 method for class 'elev'
summary(object, ...)
## S3 method for class 'elev'
knots(Fn, ...)
## S3 method for class 'elev'
plot(x, ..., main = NULL, xlab = "x", ylab = "Empirical LEV")
x |
a vector or an object of class |
digits |
number of significant digits to use, see
|
Fn, object |
an R object inheriting from |
main |
main title. |
xlab, ylab |
labels of x and y axis. |
... |
arguments to be passed to subsequent methods. |
The limited expected value (LEV) at u of a random variable
X is
E[X \wedge u] = E[\min(X, u)]. For
individual data x_1, \dots, x_n, the
empirical LEV E_n[X \wedge u] is thus
E_n[X \wedge u] = \frac{1}{n}
\left( \sum_{x_j < u} x_j + \sum_{x_j \geq u} u \right).
Methods of elev exist for individual data or for grouped data
created with grouped.data. The formula in this case is
too long to show here. See the reference for details.
For elev, a function of class "elev", inheriting from the
"function" class.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.
grouped.data to create grouped data objects;
stepfun for related documentation (even though the
empirical LEV is not a step function).
data(gdental)
lev <- elev(gdental)
lev
summary(lev)
knots(lev) # the group boundaries
lev(knots(lev)) # empirical lev at boundaries
lev(c(80, 200, 2000)) # and at other limits
plot(lev, type = "o", pch = 16)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.