elev | R Documentation |
Compute the empirical limited expected value for individual or grouped data.
elev(x, ...)
## Default S3 method:
elev(x, ...)
## S3 method for class 'grouped.data'
elev(x, ...)
## S3 method for class 'elev'
print(x, digits = getOption("digits") - 2, ...)
## S3 method for class 'elev'
summary(object, ...)
## S3 method for class 'elev'
knots(Fn, ...)
## S3 method for class 'elev'
plot(x, ..., main = NULL, xlab = "x", ylab = "Empirical LEV")
x |
a vector or an object of class |
digits |
number of significant digits to use, see
|
Fn, object |
an R object inheriting from |
main |
main title. |
xlab, ylab |
labels of x and y axis. |
... |
arguments to be passed to subsequent methods. |
The limited expected value (LEV) at u
of a random variable
X
is
E[X \wedge u] = E[\min(X, u)]
. For
individual data x_1, \dots, x_n
, the
empirical LEV E_n[X \wedge u]
is thus
E_n[X \wedge u] = \frac{1}{n}
\left( \sum_{x_j < u} x_j + \sum_{x_j \geq u} u \right).
Methods of elev
exist for individual data or for grouped data
created with grouped.data
. The formula in this case is
too long to show here. See the reference for details.
For elev
, a function of class "elev"
, inheriting from the
"function"
class.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.
grouped.data
to create grouped data objects;
stepfun
for related documentation (even though the
empirical LEV is not a step function).
data(gdental)
lev <- elev(gdental)
lev
summary(lev)
knots(lev) # the group boundaries
lev(knots(lev)) # empirical lev at boundaries
lev(c(80, 200, 2000)) # and at other limits
plot(lev, type = "o", pch = 16)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.