| InverseParalogistic | R Documentation |
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Inverse Paralogistic
distribution with parameters shape and scale.
dinvparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvparalogis(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvparalogis(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvparalogis(n, shape, rate = 1, scale = 1/rate)
minvparalogis(order, shape, rate = 1, scale = 1/rate)
levinvparalogis(limit, shape, rate = 1, scale = 1/rate,
order = 1)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape, scale |
parameters. Must be strictly positive. |
rate |
an alternative way to specify the scale. |
log, log.p |
logical; if |
lower.tail |
logical; if |
order |
order of the moment. |
limit |
limit of the loss variable. |
The inverse paralogistic distribution with parameters shape
= \tau and scale = \theta has density:
f(x) = \frac{\tau^2 (x/\theta)^{\tau^2}}{%
x [1 + (x/\theta)^\tau]^{\tau + 1}}
for x > 0, \tau > 0 and \theta > 0.
The kth raw moment of the random variable X is
E[X^k], -\tau^2 < k < \tau.
The kth limited moment at some limit d is E[\min(X,
d)^k], k > -\tau^2
and 1 - k/\tau not a negative integer.
dinvparalogis gives the density,
pinvparalogis gives the distribution function,
qinvparalogis gives the quantile function,
rinvparalogis generates random deviates,
minvparalogis gives the kth raw moment, and
levinvparalogis gives the kth moment of the limited loss
variable.
Invalid arguments will result in return value NaN, with a warning.
levinvparalogis computes computes the limited expected value using
betaint.
See Kleiber and Kotz (2003) for alternative names and parametrizations.
The "distributions" package vignette provides the
interrelations between the continuous size distributions in
actuar and the complete formulas underlying the above functions.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
exp(dinvparalogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvparalogis(qinvparalogis(p, 2, 3), 2, 3)
## first negative moment
minvparalogis(-1, 2, 2)
## case with 1 - order/shape > 0
levinvparalogis(10, 2, 2, order = 1)
## case with 1 - order/shape < 0
levinvparalogis(10, 2/3, 2, order = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.