Nothing
evodiss <-
function(phyl, comm, method = NULL, q = NULL, w = c("evoab", "even", "speciesab"), diag = FALSE, upper = FALSE, tol = 1e-8){
m <- comm
nsp <- ncol(m)
ncom <- nrow(m)
tre <- .checkphyloarg(phyl)
tre4 <- tre$phyl
if (is.null(method)) {
cat("enter the name of the method to be used\n")
cat("for calculating evodissimilarity (see help file):")
method <- readLines(n = 1)
}
method <- method[1]
if(!method%in%c("Minkowski","Euclidean","Manhattan","Chord","ScaledCanberra","Divergence","BC","MH","LG","Hellinger","chi2","Hill","Renyi", "C", "U","S"))
stop("Unavailable method")
r <- q
if(is.null(colnames(m))) stop("comm must have names for column")
if(ncom < 2) stop("At least two rows for comm are required")
if(is.null(colnames(m))) stop("comm must have names for column")
if(any(!colnames(m) %in%tipLabels(tre4))) stop("comm contains tip names that are not available in phyl")
if(any(m<0)) stop("comm should contain nonnegative values")
if(any(rowSums(m)==0)) stop("empty communities should be discarded in comm")
if(!hasEdgeLength(tre4)){
treape <- as(tre4, "phylo")
tre4 <- as(compute.brlen(treape, 1), "phylo4")
}
if(!isRooted(tre4)){
treape <- as(tre4, "phylo")
treape$root.edge <- 0
tre4 <- as(treape, "phylo4")
}
if(!hasNodeLabels(tre4)) nodeLabels(tre4) <- names(nodeLabels(tre4))
else{
e <- nodeLabels(tre4)
e[is.na(e)] <- names(e[is.na(e)])
nodeLabels(tre4) <- e
}
a <- edgeLength(tre4)
b <- a[getEdge(tre4, rootNode(tre4))]
if(is.na(b)){
ab <- a
ab[getEdge(tre4, rootNode(tre4))] <- 0
edgeLength(tre4) <- ab
}
tre4 <- subset(tre4, tips.exclude=tipLabels(tre4)[!tipLabels(tre4)%in%colnames(m)])
des <- lapply(as.vector(nodeLabels(tre4)), function(x) names(descendants(tre4, x, type="tips")))
des <- lapply(des, function(x) x[x%in%colnames(m)])
fun <- function(namestips){
return(rowSums(m[, namestips]))
}
abundancesnodes <- cbind.data.frame(lapply(des, fun))
mBabtot <- cbind(abundancesnodes, m)
colnames(mBabtot) <- c(nodeLabels(tre4), colnames(m))
branchlengths <- getEdge(tre4, colnames(mBabtot), missing = "OK")
branchlengths <- edgeLength(tre4)[branchlengths]
if(any(is.na(branchlengths))) stop("the lengths of some branches are missing in the phylogenetic tree; note that lengths of zero are allowed")
if(method%in%c("Hill", "Renyi", "C", "U", "S")){
tab2 <- (t(t(mBabtot)*branchlengths))
if(is.numeric(w) & length(w)==ncom & all(w>0)) w <- w
else if(w[1] == "evoab") w <- rowSums(tab2)
else if(w[1] == "even") w <- rep(1/ncom, ncom)
else if(w[1] == "speciesab") w <- rowSums(m)
else stop("Incorrect definition of w")
names(w) <- rownames(m)
}
hillgamma <- function(x, branch, q, wcom){
funhillgamma <- function(y, q) {
b <- branch[y>0]
y <- y[y>0]
if(abs(q-1) < tol){
resi <- exp(-sum(b*y*log(y)))
}
else{
resi <- (sum(b*y^q))^(1/(1-q))
}
return(resi)
}
xmean <- sapply(x, function(u) sum(u*wcom))
res <- funhillgamma(xmean, q)
return(res)
}
hillalpha <- function(x, branch, q, wcom){
if(abs(q-1) < tol){
tab <- as.data.frame(x*wcom)
tab2 <- tab
tab2[tab2 < tol] <- 1
tab[tab < tol] <- 0
tab3 <- tab * log(tab2)
resi <- exp(-(sum(branch * sapply(tab3, sum))))/2
}
else{
xq <- as.data.frame(x^q)
xq[x < tol] <- 0
resi <- (sum(branch * sapply(as.data.frame(xq*wcom^q), sum)))^(1/(1-q))/2
}
return(resi)
}
method <- method[1]
if (method == "Euclidean") {
tab <- t(t(mBabtot)*sqrt(branchlengths))
d <- dist(tab)
}
else if (method == "Minkowski") {
if(r < tol) stop("q must be positive with Minkowski index")
tab <- t(t(mBabtot)*(branchlengths)^(1/r))
d <- matrix(0, ncom, ncom)
fun1 <- function(x) {
(sum((abs(tab[x[1], ] - tab[x[2], ]))^r))^(1/r)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun1))
}
else if (method == "Manhattan") {
tab <- t(t(mBabtot)*(branchlengths))
d <- matrix(0, ncom, ncom)
fun1 <- function(x) {
sum((abs(tab[x[1], ] - tab[x[2], ])))
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun1))
}
else if (method == "Chord") {
tab <- t(t(mBabtot)*(branchlengths)^(1/2))
d <- matrix(0, ncom, ncom)
fun2 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
w0 <- 2*(1 - sum(p * q)/sqrt(sum(p * p))/sqrt(sum(q * q)))
if(abs(w0)<tol) return(0)
w <- sqrt(w0)
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun2))
}
else if (method == "ScaledCanberra") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun3 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
b <- branchlengths[(p + q) > 0]
ps <- p[(p + q) > 0]
qs <- q[(p + q) > 0]
w <- sum(b * abs(ps - qs)/(ps + qs))/sum(branchlengths)
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun3))
}
else if (method == "Divergence") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun4 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
b <- branchlengths[(p + q) > 0]
ps <- p[(p + q) > 0]
qs <- q[(p + q) > 0]
w <- sqrt(sum(b * ((ps - qs)/(ps + qs))^2)/sum(branchlengths))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun4))
}
else if (method == "BC") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun5 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
b <- branchlengths[(p + q) > 0]
ps <- p[(p + q) > 0]
qs <- q[(p + q) > 0]
w <- sum(abs(b * ps - b * qs))/sum(b * ps + b * qs)
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun5))
}
else if (method == "MH") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun5 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
b <- branchlengths[(p + q) > 0]
ps <- p[(p + q) > 0]
qs <- q[(p + q) > 0]
w <- sum(b*abs(ps - qs)^2)/sum(b * ps^2 + b * qs^2)
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun5))
}
else if (method == "LG") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun6 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
w <- sqrt(sum(branchlengths *( p/sum(branchlengths *p) - q/sum(branchlengths * q))^2))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun6))
}
else if (method == "Hellinger") {
tab <- mBabtot
d <- matrix(0, ncom, ncom)
fun6 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
w <- sqrt(sum(branchlengths *(sqrt( p/sum(branchlengths *p)) - sqrt(q/sum(branchlengths * q)))^2))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun6))
}
else if (method == "chi2") {
tab <- mBabtot[, colSums(mBabtot) > 0]
d <- matrix(0, ncom, ncom)
fun7 <- function(x) {
p <- tab[x[1], ]
q <- tab[x[2], ]
b <- branchlengths[colSums(mBabtot) > 0]
w <- sqrt(sum(b * (sum(b * colSums(tab)) / colSums(tab)) *
(p/sum(b * p) - q/sum(b * q))^2))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun7))
}
else if (method == "Hill"){
if(r < 0) stop("q should be nonnegative")
tab1 <- mBabtot[, colSums(mBabtot) > 0]
branchlengths <- branchlengths[colSums(mBabtot) > 0]
tab2 <- (t(t(tab1)*branchlengths))
composition <- as.data.frame(sweep(tab1, 1, rowSums(tab2), "/"))
d <- matrix(0, ncom, ncom)
fun9 <- function(x) {
vresgamma <- hillgamma(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
vresalpha <- hillalpha(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
beta <- vresgamma / vresalpha
w <- beta - 1
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun9))
}
else if (method == "Renyi"){
if(r < 0) stop("q should be nonnegative")
tab1 <- mBabtot[, colSums(mBabtot) > 0]
branchlengths <- branchlengths[colSums(mBabtot) > 0]
tab2 <- (t(t(tab1)*branchlengths))
composition <- as.data.frame(sweep(tab1, 1, rowSums(tab2), "/"))
d <- matrix(0, ncom, ncom)
fun9 <- function(x) {
vresgamma <- hillgamma(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
vresalpha <- hillalpha(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
beta <- vresgamma / vresalpha
w <- log(beta, 2)
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun9))
}
else if (method == "C"){
if(r < 0) stop("q should be nonnegative")
tab1 <- mBabtot[, colSums(mBabtot) > 0]
branchlengths <- branchlengths[colSums(mBabtot) > 0]
tab2 <- (t(t(tab1)*branchlengths))
composition <- as.data.frame(sweep(tab1, 1, rowSums(tab2), "/"))
d <- matrix(0, ncom, ncom)
fun9 <- function(x) {
vresgamma <- hillgamma(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
vresalpha <- hillalpha(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
beta <- vresgamma / vresalpha
if(abs(r-1)<tol){
w <- log(beta, 2)
}
else
w <- 1-((1/beta)^(r-1)-(1/2)^(r-1))/(1-(1/2)^(r-1))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun9))
}
else if (method == "U"){
if(r < 0) stop("q should be nonnegative")
tab1 <- mBabtot[, colSums(mBabtot) > 0]
branchlengths <- branchlengths[colSums(mBabtot) > 0]
tab2 <- (t(t(tab1)*branchlengths))
composition <- as.data.frame(sweep(tab1, 1, rowSums(tab2), "/"))
d <- matrix(0, ncom, ncom)
fun9 <- function(x) {
vresgamma <- hillgamma(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
vresalpha <- hillalpha(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
beta <- vresgamma / vresalpha
if(abs(r-1)<tol){
w <- log(beta, 2)
}
else
w <- 1-((1/beta)^(1-r)-(1/2)^(1-r))/(1-(1/2)^(1-r))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun9))
}
else if (method == "S"){
if(r < 0) stop("q should be nonnegative")
tab1 <- mBabtot[, colSums(mBabtot) > 0]
branchlengths <- branchlengths[colSums(mBabtot) > 0]
tab2 <- (t(t(tab1)*branchlengths))
composition <- as.data.frame(sweep(tab1, 1, rowSums(tab2), "/"))
d <- matrix(0, ncom, ncom)
fun9 <- function(x) {
vresgamma <- hillgamma(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
vresalpha <- hillalpha(composition[c(x[1], x[2]), ], branchlengths, r, w[c(x[1], x[2])]/sum(w[c(x[1], x[2])]))
beta <- vresgamma / vresalpha
w <- 1-2*((1/beta)-(1/2))
return(w)
}
index <- cbind(col(d)[col(d) < row(d)], row(d)[col(d) < row(d)])
d <- unlist(apply(index, 1, fun9))
}
else stop("Non convenient method")
attr(d, "Size") <- ncom
attr(d, "Labels") <- rownames(m)
attr(d, "Diag") <- diag
attr(d, "Upper") <- upper
attr(d, "method") <- method
attr(d, "call") <- match.call()
class(d) <- "dist"
return(d)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.