Nothing
#' @title
#' Multivariate estimates of AFT model with log logistic distribution using MCMC.
#'
#' @description Provides estimate of AFT model with log logistic distribution using MCMC for multivariable (maximum 5 covariates of column at a time) in high dimensional gene expression data. It also deals covariates with missing values.
#'
#' @details
#'
#' This function deals covariates (in data) with missing values. Missing value in any column (covariate) is replaced by mean of that particular covariate.
#' AFT model is log-linear regression model for survival time \eqn{ T_1},\eqn{ T_{2}},..,\eqn{T_{n}}.
#' i.e., \deqn{log(T_i)= x_i'\beta +\sigma\epsilon_i ;~\epsilon_i \sim F_\epsilon (.)~which~is~iid }
#' Where \eqn{ F_\epsilon } is known cdf which is defined on real line.
#' When baseline distribution is logistic then T follows log logistic distribution.
#' \deqn{ T \sim Log-Logis(x'\beta,\sqrt{\tau)} }
#'
#'
#' @param m Starting column number of covariates of study from high dimensional entered data.
#' @param n Ending column number of covariates of study from high dimensional entered data.
#' @param STime name of survival time in data.
#' @param Event name of event in data. 0 is for censored and 1 for occurrence of event.
#' @param nc number of MCMC chain.
#' @param ni number of MCMC iteration to update the outcome.
#' @param data High dimensional gene expression data that contains event status, survival time and and set of covariates.
#' @return Data frame is containing mean, sd, n.eff, Rhat and credible intervals (2.5\%, 25\%, 50\%, 75\% and 97.5\%) for beta's, sigma, tau and deviance of the model for the selected covariates. beta[1] is for intercept and others are for covariates (which is/are chosen as columns in data). sigma is the scale parameter of the distribution.
#' @import R2jags
#'
#' @references Prabhash et al(2016) <doi: 10.21307/stattrans-2016-046>
#'
#' @examples
#' ##
#' data(hdata)
#' lgstbymv(10,12,STime="os",Event="death",5,100,hdata)
#' ##
#' @export
#' @author Atanu Bhattacharjee, Gajendra Kumar Vishwakarma and Pragya Kumari
#' @seealso wbysmv, lgnbymv, lgstbyuni
#'
lgstbymv=function(m,n,STime,Event,nc,ni,data){
nr<-nrow(data)
if(STime!="os"){
names(data)[names(data) == STime] <- "os"
}
if(Event!="death"){
names(data)[names(data) == Event] <- "death"
}
d11 <- subset(data, select = c(m:n))
le<-length(d11)
for(i in 1:nr) {
for(j in 1:le) {
d11[i,j] = ifelse(is.na(d11[i,j])=="TRUE", mean(d11[,j], na.rm=TRUE),
d11[i,j])
}
}
pnt<-NULL
for(j in 1:le)
{
if(sum(d11[,j])==0) {
pnt<-c(pnt,j)
}
}
if(is.null(pnt)==F){
d11 <- d11[,-pnt]
}
len<-length(d11)
d12<-data.frame(data[,c('death','os')],d11)
mx<-max(d12$os) + 100
surt<-ifelse(d12$death == 1, d12$os, NA)
stcen<-ifelse(d12$death == 0, d12$os, mx)
stcen<-log(stcen)
ls<-log(surt)
d12$os<- ls
cen<-as.numeric(is.na(surt))
d12<-data.frame(d12,stcen,cen)
if(len>5){
cat("Outcome for first 5 covariates : ")
vv<-subset(d11,select = c(1:5))
} else {
vv<-d11
}
vname<-colnames(vv)
if(len==1){
data1<-list(os=d12$os, stcen=d12$stcen, cen=d12$cen, v1=vv[,1], N = nr)
modelj1<-function(){
for (i in 1:N) {
sV1[i] <- (v1[i]-mean(v1[]))/sd(v1[])
os[i] ~ dlogis(mu[i], taustar)
cen[i] ~ dinterval(os[i],stcen[i])
mu[i] <- beta[1] + beta[2]*sV1[i]
}
taustar <- sqrt(tau)
for(i in 1:2){
beta[i] ~ dnorm(0,0.000001)
rm[i] <- exp(beta[i])
prob[i] <- step(beta[i])
}
tau ~ dgamma(0.001,0.001)
sigma <- sqrt(1/tau)
junk1 <- exp(os[1])
}
inits1 <- function() {
list(beta=c(0,0), tau=1)
}
jagsft <- jags(model.file=modelj1, data=data1, inits = inits1,
parameters.to.save = c('beta','tau','sigma'), n.chains=nc,
n.iter = ni)
} else if(len==2){
data2<-list(os=d12$os, stcen=d12$stcen, cen=d12$cen, v1=vv[,1], v2=vv[,2], N = nr)
modelj2<-function(){
for (i in 1:N) {
sV1[i] <- (v1[i]-mean(v1[]))/sd(v1[])
sV2[i] <- (v2[i]-mean(v2[]))/sd(v2[])
os[i] ~ dlogis(mu[i], taustar)
cen[i] ~ dinterval(os[i],stcen[i])
mu[i] <- beta[1] + beta[2]*sV1[i] + beta[3]*sV2[i]
}
taustar <- sqrt(tau)
for(i in 1:3){
beta[i] ~ dnorm(0,0.000001)
rm[i] <- exp(beta[i])
prob[i] <- step(beta[i])
}
tau ~ dgamma(0.001,0.001)
sigma <- sqrt(1/tau)
junk1 <- exp(os[1])
}
inits2 <- function() {
list(beta=c(0,0,0), tau=1)
}
jagsft <- jags(model.file=modelj2, data=data2, inits = inits2,
parameters.to.save = c('beta','tau','sigma'), n.chains=nc,
n.iter = ni)
} else if(len==3){
data3<-list(os=d12$os, stcen=d12$stcen, cen=d12$cen, v1=vv[,1], v2=vv[,2], v3=vv[,3], N = nr)
modelj3<-function(){
for (i in 1:N) {
sV1[i] <- (v1[i]-mean(v1[]))/sd(v1[])
sV2[i] <- (v2[i]-mean(v2[]))/sd(v2[])
sV3[i] <- (v3[i]-mean(v3[]))/sd(v3[])
os[i] ~ dlogis(mu[i], taustar)
cen[i] ~ dinterval(os[i],stcen[i])
mu[i] <- beta[1] + beta[2]*sV1[i] + beta[3]*sV2[i] + beta[4]*sV3[i]
}
taustar <- sqrt(tau)
for(i in 1:4){
beta[i] ~ dnorm(0,0.000001)
rm[i] <- exp(beta[i])
prob[i] <- step(beta[i])
}
tau ~ dgamma(0.001,0.001)
sigma <- sqrt(1/tau)
junk1 <- exp(os[1])
}
inits3 <- function() {
list(beta=c(0,0,0,0), tau=1)
}
jagsft <- jags(model.file=modelj3, data=data3, inits = inits3,
parameters.to.save = c('beta','tau','sigma'), n.chains=nc,
n.iter = ni)
} else if(len==4){
data4<-list(os=d12$os, stcen=d12$stcen, cen=d12$cen, v1=vv[,1], v2=vv[,2], v3=vv[,3], v4=vv[,4], N = nr)
modelj4<-function(){
for (i in 1:N) {
sV1[i] <- (v1[i]-mean(v1[]))/sd(v1[])
sV2[i] <- (v2[i]-mean(v2[]))/sd(v2[])
sV3[i] <- (v3[i]-mean(v3[]))/sd(v3[])
sV4[i] <- (v4[i]-mean(v4[]))/sd(v4[])
os[i] ~ dlogis(mu[i], taustar)
cen[i] ~ dinterval(os[i],stcen[i])
mu[i] <- beta[1] + beta[2]*sV1[i] + beta[3]*sV2[i] + beta[4]*sV3[i]
+ beta[5]*sV4[i]
}
taustar <- sqrt(tau)
for(i in 1:5){
beta[i] ~ dnorm(0,0.000001)
rm[i] <- exp(beta[i])
prob[i] <- step(beta[i])
}
tau ~ dgamma(0.001,0.001)
sigma <- sqrt(1/tau)
junk1 <- exp(os[1])
}
inits4 <- function() {
list(beta=c(0,0,0,0,0), tau=1)
}
jagsft <- jags(model.file=modelj4, data=data4, inits = inits4,
parameters.to.save = c('beta','tau','sigma'), n.chains=nc,
n.iter = ni)
} else {
data5<-list(os=d12$os, stcen=d12$stcen, cen=d12$cen, v1=vv[,1], v2=vv[,2], v3=vv[,3], v4=vv[,4], v5=vv
[,5], N = nr)
modelj5<-function(){
for (i in 1:N) {
sV1[i] <- (v1[i]-mean(v1[]))/sd(v1[])
sV2[i] <- (v2[i]-mean(v2[]))/sd(v2[])
sV3[i] <- (v3[i]-mean(v3[]))/sd(v3[])
sV4[i] <- (v4[i]-mean(v4[]))/sd(v4[])
sV5[i] <- (v5[i]-mean(v5[]))/sd(v5[])
os[i] ~ dlogis(mu[i], taustar)
cen[i] ~ dinterval(os[i],stcen[i])
mu[i] <- beta[1] + beta[2]*sV1[i] + beta[3]*sV2[i] + beta[4]*sV3[i] + beta[5]*sV4[i] + beta[6]*sV5[i]
}
taustar <- sqrt(tau)
for(i in 1:6){
beta[i] ~ dnorm(0,0.000001)
rm[i] <- exp(beta[i])
prob[i] <- step(beta[i])
}
tau ~ dgamma(0.001,0.001)
sigma <- sqrt(1/tau)
junk1 <- exp(os[1])
}
inits5 <- function() {
list(beta=c(0,0,0,0,0,0), tau=1)
}
jagsft <- jags(model.file=modelj5, data=data5, inits = inits5,
parameters.to.save = c('beta','tau','sigma'), n.chains=nc,
n.iter = ni)
}
cat("Estimates for variables: ", vname,"\n")
f=data.frame(jagsft$BUGSoutput$summary)
return(f)
}
utils::globalVariables(c("N","v1","sd","v2","v3","v4","v5","tau","step","os"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.