Nothing
library(randomForest)
library(aloom)
library(glmnet)
set.seed(1)
x1 <- matrix(rnorm(100 * 20), 100, 20)
x2 <- matrix(rnorm(30 * 20), 30, 20)
y1 <- as.factor(sample(c("POS","NEG"), 100, replace = TRUE))
vnames <- paste0("V",seq(20))
colnames(x1) <- vnames
colnames(x2) <- vnames
rownames(x1) <- paste0("train",seq(nrow(x1)))
rownames(x2) <- paste0("test",seq(nrow(x2)))
test_that(
"check that all expected outputs are created",
{
model.params <- list(ntree=100)
fit <- aloom(x1,y1,x2,method="rf",model.params)
expect_true(is.list(fit))
expect_true(is.matrix(fit$aloom.probs))
}
)
test_that(
"check that expected output has correct rownames and colnames",
{
model.params <- list(ntree=100)
fit <- aloom(x1,y1,x2,method="rf",model.params)
expect_true(identical(sort(colnames(fit$aloom.probs)), sort(rownames(x1))))
expect_true(identical(sort(rownames(fit$aloom.probs)), sort(rownames(x2))))
}
)
test_that(
"test fit.RF internal function",
{
set.seed(1)
fit.RF <- randomForest::randomForest(x1,
y1,
ntree=100)
predictedY <- as.vector(predict(fit.RF,x2,type="response"))
predictedProbs <- predict(fit.RF,x2,type="prob")
predictedProbabilityY<-predictedProbs[,2]
model.params <- list(ntree=100)
list.results <- aloom:::fit.rf(x1,y1,x2,model.params,seed=1)
expect_equal(predictedY,list.results$predictedY)
expect_equal(predictedProbabilityY,list.results$predictedProbabilityY)
}
)
test_that(
"test fit.glmnet internal function",
{
set.seed(1)
fit.glmnet <- glmnet::glmnet(x1,
y1,
family="binomial")
lambda <- fit.glmnet$lambda
alpha <- 1
idx <- 50
selected.lambda <- lambda[idx]
predictedY.all.lambda <- predict(fit.glmnet,as.matrix(x2),type="class")
predictedY <- predictedY.all.lambda[,idx]
predictedProbabilityY.all.lambda <- predict(fit.glmnet,as.matrix(x2),type="response")
predictedProbabilityY <- predictedProbabilityY.all.lambda[,idx]
model.params <- list(alpha=alpha, lambda=lambda, selected.lambda=selected.lambda)
list.results <- aloom:::fit.glmnet(x1,y1,x2,model.params)
expect_equal(predictedY,list.results$predictedY)
expect_equal(predictedProbabilityY,list.results$predictedProbabilityY)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.