R/extract_covariates.R

Defines functions raster_to_terra extract_covar_var_time_base extract_covariates_var_time.steps_xyt extract_covariates_var_time.track_xyt extract_covariates_var_time extract_covariates_along.steps_xy extract_covariates_along extract_covar_base extract_covariates.steps_xy extract_covariates.random_points extract_covariates.track_xy extract_covariates

Documented in extract_covariates extract_covariates_along extract_covariates_along.steps_xy extract_covariates.random_points extract_covariates.steps_xy extract_covariates.track_xy extract_covariates_var_time extract_covariates_var_time.steps_xyt extract_covariates_var_time.track_xyt

#' Extract covariate values
#'
#' Extract the covariate values at relocations, or at the beginning or end of
#' steps.
#' @template track_xy_star_steps
#' @param covariates `[SpatRaster]` \cr The
#'   (environmental) covariates. For `extract_covariates_var_time` the argument
#'   `covariates` need to have a `z`-column (i.e. the time stamp).
#' @param where `[character(1)="end"]{"start", "end", "both"}` \cr For `steps`
#'   this determines if the covariate values should be extracted at the
#'   beginning or the end of a step. or `end`.
#' @param ... Additional arguments passed to `terra::extract()`.
#' @return A `tibble` with additional columns for covariate values.
#' @name extract_covariates
#' @export
#' @examples
#' data(deer)
#' sh_forest <- get_sh_forest()
#' mini_deer <- deer[1:20, ]
#' mini_deer |> extract_covariates(sh_forest)
#' mini_deer |> steps() |> extract_covariates(sh_forest)
#'

extract_covariates <- function(x, ...) {
  UseMethod("extract_covariates", x)
}

#' @export
#' @rdname extract_covariates
extract_covariates.track_xy <- function(x, covariates, ...) {
  extract_covar_base(x, covariates, ...)
}

#' @export
#' @rdname extract_covariates
extract_covariates.random_points <- function(x, covariates, ...) {
  extract_covar_base(x, covariates, ...)
}

#' @export
#' @rdname extract_covariates
extract_covariates.steps_xy <- function(x, covariates, where = "end", ...) {

  validate_covars(covariates)
  if (where == "both") {
    x_start <- terra::extract(covariates, as.matrix(x[, c("x1_", "y1_")]), ...)
    names(x_start) <- paste0(names(x_start), "_start")
    x_end <- terra::extract(covariates, as.matrix(x[, c("x2_", "y2_")]), ...)
    names(x_end) <- paste0(names(x_end), "_end")
    x_all <- cbind(x_start, x_end)
    x[names(x_all)] <- x_all
  } else {
    x[names(covariates)] <- if (where == "end") {
      terra::extract(covariates, as.matrix(x[, c("x2_", "y2_")]), ...)
    } else if (where == "start") {
      terra::extract(covariates, as.matrix(x[, c("x1_", "y1_")]), ...)
    }
  }
  x
}

extract_covar_base <- function(x, covars, ...) {
  covars <- validate_covars(covars)
  x[names(covars)] <- terra::extract(covars, x[, c("x_", "y_")],
                                     ID = FALSE, ...)
  x
}


# extract covariates along ------------------------------------------------


#' @rdname extract_covariates
#' @details `extract_covariates_along` extracts the covariates along a straight line between the start and the end point of a (random) step. It returns a list, which in most cases will have to be processed further.
#' @export
#' @examples
#' \donttest{
#' # Illustration of extracting covariates along the a step
#' mini_deer |> steps() |> random_steps() |>
#'   extract_covariates(sh_forest) |> # extract at the endpoint
#'   (\(.) mutate(., for_path = extract_covariates_along(., sh_forest)))()  |>
#'   # 1 = forest, lets calc the fraction of forest along the path
#'   mutate(for_per = purrr::map_dbl(for_path, function(x) mean(x == 1)))
#' }

extract_covariates_along <- function(x, ...) {
  UseMethod("extract_covariates_along", x)
}

#' @export
#' @rdname extract_covariates
extract_covariates_along.steps_xy <- function(x, covariates, ...) {
  covariates <- validate_covars(covariates)

  wkt <- with(x, paste0("LINESTRING (", x1_, " ", y1_, ",", x2_, " ", y2_, ")"))
  ll <- sf::st_as_sfc(wkt)
  l2 <- terra::extract(covariates, terra::vect(ll), ...)
  stats::setNames(split(l2[, -1], l2[, 1]), NULL)
}

# Extract covariates varying time -----------------------------------------
#' @rdname extract_covariates
#' @param when `[character(1)="any"]{"any", "before", "after"}` \cr Specifies for
#'  for `extract_covariates_var_time` whether to look before, after or in both
#'  direction (`any`) for the temporally closest environmental raster.
#' @param max_time `[Period(1)]` \cr The maximum time difference between a relocation
#'  and the corresponding raster. If no rasters are within the specified max.
#'  distance `NA` is returned.
#' @param name_covar `[character(1)="time_var_covar"]` \cr The name of the new column.
#' @export

extract_covariates_var_time <- function(x, ...) {
  UseMethod("extract_covariates_var_time", x)
}

#' @export
#' @rdname extract_covariates
extract_covariates_var_time.track_xyt <- function(
  x, covariates, when = "any", max_time,
  name_covar = "time_var_covar", ...) {
  x[name_covar] <- extract_covar_var_time_base(
    cbind(x$x_, x$y_),
    x$t_, covariates, when, max_time, ...)
  x
}

#' @export
#' @rdname extract_covariates
extract_covariates_var_time.steps_xyt <- function(
  x, covariates, when = "any", max_time, name_covar = "time_var_covar",
  where = "end", ...) {

  covariates <- validate_covars(covariates)

  if (where == "start") {
    x[name_covar] <- extract_covar_var_time_base(
      cbind(x$x1_, x$y1_),
      x$t1_, covariates, when, max_time, ...)
  } else if (where == "end") {
    x[name_covar] <- extract_covar_var_time_base(
      cbind(x$x2_, x$y2_),
      x$t2_, covariates, when, max_time, ...)
  } else if (where == "both") {
    x[paste0(name_covar, "_start")] <- extract_covar_var_time_base(
      cbind(x$x1_, x$y1_),
      x$t1_, covariates, when, max_time, ...)
    x[paste0(name_covar, "_end")] <- extract_covar_var_time_base(
      cbind(x$x2_, x$y2_),
      x$t2_, covariates, when, max_time, ...)
  }
  x
}


extract_covar_var_time_base <- function(
  xy, t, covariates, when = "any",
  max_diff, ...) {

  if (is.null(terra::time(covariates))) {
    stop("Covariates do not have a time stamp. Use `terra::time()` to assign one.")
  }

  if (!is(max_diff, "Period")) {
    stop("`max_diff` is not of class `Period`.")
  }
  max_diff <- lubridate::period_to_seconds(max_diff)
  t_covar <- as.numeric(as.POSIXct(terra::time(covariates)))
  t_obs <- as.numeric(as.POSIXct(t))

  # Fun to find closest point
  which_rast <- function(t_diffs, where, max_diff) {
    wr <- if (when == "after") {
      which.min(t_diffs[t_diffs >= 0])
    } else if (when == "before") {
      which.min(abs(t_diffs[t_diffs <= 0])) + sum(t_diffs > 0)
    } else if (when == "any") {
      which.min(abs(t_diffs))
    }
    if (length(wr) == 0) {
      NA
    } else if (max_diff < abs(t_diffs[wr])) {
      NA
    } else {
      wr
    }
  }

  wr <- sapply(t_obs, function(x) which_rast(x - t_covar, when, max_diff))
  ev <- terra::extract(covariates, cbind(xy), ...)
  cov_val <- ev[cbind(seq_along(wr), wr)]
  return(cov_val)
}


raster_to_terra <- function(x) {
  if (class(x) %in% paste0("Raster", c("Layer", "Stack", "Brick"))) {
    terra::rast(lapply(list(x), function(r) terra::rast(r)))
  } else {
    "No raster or SpatRast provided"
  }
}

Try the amt package in your browser

Any scripts or data that you put into this service are public.

amt documentation built on June 25, 2024, 1:14 a.m.