R/DEL-model.R

Defines functions DEL.PATH DEL.SC0 DEL.SC DEL.TRI0 DEL.TRI DEL.PATH0 DEL.default DEL

Documented in DEL DEL.default DEL.PATH DEL.PATH0 DEL.SC DEL.SC0 DEL.TRI DEL.TRI0

#' Convert object to a constrained-Delaunay triangulation
#'
#' This *relational-form* Delaunay-based triangulation model is analogous to the
#' 'TRI' model in the silicate package and formally extends the class of that
#' model. A primitives-based shape-constrained triangulation. The Delaunay model
#' is the *mostly Delaunay* scheme used by the provable-quality meshers.
#'
#' Compare [DEL()] to its *structural-form* counterpart [DEL0()]. `DEL()`
#' records a `visible` property on the triangle table, and this is queried by
#' other functions for the status of triangles that belonged to a hole within a
#' surface. These triangle are obviously useful, so they are kept but default to
#' `visible = FALSE` and so are not plotted.
#'
#' The Delaunay model is a constrained triangulation with a variety of
#' constraint and qualification types. The Delaunay model has the odd but
#' defining characteristic of not being always consistent with the Delaunay
#' criterion. Edge inclusion is non-negotiable, but other constraints include
#' (limit, or avoid) Steiner vertex insertion, a limit on the maximum area of a
#' triangle, minimum triangle angle and strict adherence to the Delaunay
#' criterion.
#'
#' The Delaunay criterion forms the basis of this model, and is its defining
#' characteristic without being strictly adhered to. This is awkward to describe
#' but is the key property. From Wikipedia: The "Delaunay triangulation (also
#' known as a Delone triangulation) for a given set P of discrete points in a
#' plane is a triangulation DT(P) such that no point in P is inside the
#' circumcircle of any triangle in DT(P). Delaunay triangulations maximize the
#' minimum angle of all the angles of the triangles in the triangulation; they
#' tend to avoid sliver triangles. . . . The Delaunay triangulation corresponds
#' to the dual graph of the Voronoi diagram of P"
#' \url{https://en.wikipedia.org/wiki/Delaunay_triangulation}.
#'
#' This strict criterion is _relaxed_ in small measure, to ensure that all
#' edge-inputs are preserved and to allow further constraints such as triangle
#' size and internal angle to be specified.
#' @param x input model
#' @param ... passed to the underlying Triangle library, see [RTriangle::triangulate()][RTriangle::triangulate]
#' @param max_area the maximum area of a triangle
#' @return DEL model
#' @seealso [DEL0] [TRI][silicate::TRI] [TRI0][silicate::TRI0]
#' @export
#'
#' @inheritSection anglr-package Licensing
#'
#' @section Warning:
#'
#' Please take care with the `max_area` argument. The units are not taken into
#' account, the value refers only to the planar area of the x/y coordinates as
#' they are so this is not a real world area, but a mathematical property of the
#' data. There is a safety check for a very large number of triangles, and this
#' may be overridden by replying 'Yes' to the prompt.
#'
#' @section Topology:
#'
#' The DEL model cannot currently mesh point features, and it cannot mesh
#' linear features if they include z or other vertex attributes - for now use
#' [DEL0()] which can do those.
#'
#' @examples
#' plot3d(DEL(simpleworld))
DEL <- function(x, ..., max_area = NULL) {
  UseMethod("DEL")
}
#' @name DEL
#' @importFrom rlang .data
#' @export
DEL.default <- function(x, ..., max_area = NULL) {
  p <- try(silicate::PATH(x), silent = TRUE)
  #print("DEL.default")
  if (inherits(p, "try-error")) {
    stop("cannot convert 'x' to a PATH, try 'DEL(silicate::SC(x))' rather than 'DEL(x)'")
  }
  DEL(p, ..., max_area = max_area)
}
#' @name DEL
#' @export
DEL.PATH0 <- function(x, ..., max_area = NULL) {
  DEL(PATH(x),  ..., max_area = max_area)
}

#' @name DEL
#' @export
DEL.TRI <- function(x, ..., max_area = NULL) {
  DEL(SC(x), ..., max_area = max_area)
}
#' @name DEL
#' @export
DEL.TRI0 <- function(x, ..., max_area = NULL) {
  DEL(SC(x), ..., max_area = max_area)
}

#' @name DEL
#' @export
DEL.SC <- function(x, ..., max_area = NULL)  {
  .check_area(x$vertex$x_, x$vertex$y_, max_area)

#print("DEL.SC")
  ## find if any objects have < 3 edges
  edge_per_object_lt <- x$object["object_"] %>%
    dplyr::inner_join(x$object_link_edge, "object_") %>%
    dplyr::inner_join(x$object_link_edge, "object_") %>%
    dplyr::group_by(.data$object_) %>% dplyr::summarise(n = dplyr::n()) %>% dplyr::filter(.data$n < 3)
  if (nrow(edge_per_object_lt) > 0) {
    message("dropping untriangulatable objects")
    ## need anti_join.sc
    x <- dplyr::filter(x, !.data$object_ %in% edge_per_object_lt$object_)
    drop <- x$vertex$vertex_ %in% c(x$edge$.vx0, x$edge$.vx1)
    if (any(drop)) x$vertex <- x$vertex[drop, ]
  }

  ## we need a pfft::edge_triangle_map
  ## https://github.com/hypertidy/silicate/issues/62#issuecomment-372898877
  objs <- vector("list", nrow(x$object))
  for (i in seq_along(objs)) {
    x1 <- x
    x1$object <- x1$object[i, ]
    x1$edge <- x1$object %>% dplyr::inner_join(x1$object_link_edge, "object_") %>% dplyr::inner_join(x1$edge, "edge_")
    ordered_verts <- t(apply(as.matrix(x1$edge[c(".vx0", ".vx1")]), 1, sort))
    x1$vertex <- x$vertex[x$vertex$vertex_ %in% c(ordered_verts), ]

    dots <- list()

    dots[["a"]] <- max_area
    dots[["x"]] <- x1
    RTri <- do.call(edge_RTriangle, dots)
    objs[[i]] <- RTri
  }


  ## unique triangles
  n_t <- unlist(lapply(objs, function(x) nrow(x$T)))
  bad <- n_t < 1
  if (all(bad)) stop("nothing triangulatable")
  objs <- objs[!bad]
  n_t <- n_t[!bad]
  nT <- sum(n_t)

  P <- do.call(rbind, lapply(objs, function(x) x$P))
  f <- as.integer(factor(paste(P[,1], P[,2], sep = "-")))
  P <- cbind(P, f)
  P_unique <- P[!duplicated(f), ]

  vertex <- tibble::tibble(x_ = P_unique[,1], y_ = P_unique[,2],
                           vertex_ = silicate::sc_uid(nrow(P_unique)),
                           Pidx = P_unique[,3])
  TRIS <- lapply(objs, function(x) x$T)
  count <- 0

  for (i in seq_along(TRIS)) {
    TRIStemp <- TRIS[[i]] + count
    count <- count + max(TRIS[[i]])
    TRIS[[i]] <- TRIStemp
  }
  ## need to identify segments that were input and are
  ## shared by two triangles, set to invisible

  TRIS <- do.call(rbind, TRIS)

  v0 <- match(P[TRIS[,1],3], vertex$Pidx)
  v1 <- match(P[TRIS[,2],3], vertex$Pidx)
  v2 <- match(P[TRIS[,3],3], vertex$Pidx)


  triangle <- tibble::tibble(.vx0 = vertex$vertex_[v0],
                             .vx1 = vertex$vertex_[v1],
                             .vx2 = vertex$vertex_[v2],
                             object_ = rep(x$object$object_[!bad], n_t))


  vertex$Pidx <- NULL
  meta <- tibble(proj = get_proj(x), ctime = Sys.time())
  structure(list(object = x$object[!bad, ],  ## this is tenuous, using !bad throughout

                 triangle = triangle,
                 vertex = vertex,
                 meta = meta), class = c("DEL", "TRI", "sc"))

}


#' @name DEL
#' @export
DEL.SC0 <- function(x, ..., max_area = NULL)  {
  ## FIXME:build off SC0 not SC
 DEL(SC(x), max_area = max_area, ...)

}
## DEL for a PATH is a copy of pfft_polys that returns a DEL, TRI, sc
## TRI for a PATH returns a TRI, sc (just decido triangles)

#' @name DEL
#' @export
#' @importFrom tibble tibble
DEL.PATH <- function(x, ..., max_area = NULL) {
 # print("DEL.PATH")
 # print(sort(x$object$object_))
  .check_area(x$vertex$x_, x$vertex$y_, max_area)
  dots <- list(...)
  dots[["a"]] <- max_area
  dots[["x"]] <- x

  ## TRIANGULATE with PATH-identity
  RTri <- do.call(edge_RTriangle, dots)
  ## object/path_link_triangle (path_triangle_map)
  ptm <- path_triangle_map(x, RTri)
  #ptm$path_ <- as.integer(factor(ptm$path_))
  ## unique triangles
  triangle <- tibble::tibble(triangle_ = silicate::sc_uid(nrow(RTri$T)))

  ## all triangle instances
  ptm[["triangle_"]] <- triangle[["triangle_"]][ptm[["triangle_idx"]]]
  ptm[["triangle_idx"]] <- NULL

  ## any triangle that occurs an even number of times in a path
  ## per object is part of a hole
  path <- x$path
  path$path_ <- as.character(path$path_)
  ptm <- dplyr::inner_join(ptm, path[c("path_", "object_")], "path_")
  object_link_triangle <- ptm %>% dplyr::group_by(.data$object_, .data$triangle_) %>%
    dplyr::mutate(visible = !(dplyr::n() %% 2 == 0)) %>%
    dplyr::ungroup()

  vertex <- tibble::tibble(x_ = RTri$P[,1], y_ = RTri$P[,2],
                           vertex_ = silicate::sc_uid(nrow(RTri$P)))

  triangle <- dplyr::mutate(triangle, .vx0 = vertex$vertex_[RTri$T[,1]],
                            .vx1 = vertex$vertex_[RTri$T[,2]],
                            .vx2 = vertex$vertex_[RTri$T[,3]])
  triangle <- object_link_triangle[c("triangle_", "object_", "visible")] %>% dplyr::inner_join(triangle, "triangle_")
  triangle$triangle_ <- NULL
#  tXv <- tibble::tibble(vertex_ = vertex[["vertex_"]][t(RTri$T)],
#                        triangle_ = rep(triangle[["triangle_"]], each = 3))

  meta <- tibble(proj = get_proj(x), ctime = Sys.time())
#browser()
  structure(list(object = x$object, #object_link_triangle = object_link_triangle,
                 triangle = triangle,
                 vertex = vertex,
                 meta = meta), class = c("DEL", "TRI", "sc"))

}

Try the anglr package in your browser

Any scripts or data that you put into this service are public.

anglr documentation built on July 29, 2020, 9:06 a.m.