R/similarMunsellChips.R

Defines functions equivalentMunsellChips .makeEquivalentMunsellLUT

Documented in equivalentMunsellChips

#' .makeEquivalentMunsellLUT
#'
#' @description Makes the look up table based on pair-wise CIE2000 color contrast (\code{dE00}) of LAB colors with D65 illuminant of LAB colors for all whole value/chroma "chips" in the \code{aqp::munsell} data set via \code{farver::compare_colour}. Specify a threshold in terms of a probability level of CIE2000 distance (relative to whole dataset).

#' @param threshold Quantile cutoff (of dE00 color contrast) for "equivalent" colors, default \code{0.001} based on all whole value/chroma "chips" in the \code{munsell} data set.
#' 
#' @seealso \code{\link{equivalentMunsellChips}}
#' 
#' @references
#' Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
#' 
#'  Thomas Lin Pedersen, Berendea Nicolae and Romain François (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver
#'  
#' Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193
#' 
#' @return A list with equal length to the number of rows (chips) in \code{munsell} data, each containing a numeric vector of row indices that are equivalent (CIE2000 distance less than \code{threshold}).
#'
#' @examples
#' \dontrun{
#'
#'   # use default threshold
#'   equivalent_chip_lut <- .makeEquivalentMunsellLUT()
#'
#'   # inspect the first 10 chips, it seems to work!
#'   lapply(equivalent_chip_lut[1:10], function(i) munsell[i,])
#'
#'   # lets see some info on the number of chips per chip
#'   nchipsper <- sapply(equivalent_chip_lut, length)
#'
#'   # top 10 are very high chroma chips with over 70 chips "identical"
#'   nchipsper[order(nchipsper, decreasing = TRUE)[1:10]]
#'
#'   # look at distribution
#'   plot(density(nchipsper))
#'
#'   # median is 5 -- Q: is this true of the range of Munsell colors typically used for soils?
#'   quantile(nchipsper)
#'
#'   # double the default threshold
#'   doubletest <- sapply(.makeEquivalentMunsellLUT(threshold = 0.002), length)
#'   lines(density(doubletest), lty=2)
#'
#'   # apprx. doubles the number of chips per chip in IQR
#'   quantile(doubletest)
#' }
#'
#' @importFrom farver convert_colour compare_colour
#' @keywords internal
#' @noRd
.makeEquivalentMunsellLUT <- function(threshold = 0.001) {
  munsell <- NULL
  load(system.file("data/munsell.rda", package = "aqp")[1])

  # 2022-03-31: updated neutral chips and 2.5 value chips now included
  
  
  ## this version creates too-large of an output, will have to investigate that some other time
  # this produces an 9227x9227matrix ~285MB; just want upper triangle no diagonal
  # # thanks to @dylanbeaudette for pointing out better farver syntax
  # system.time(x <- farver::compare_colour(munsell[, c('L', 'A', 'B')],
  #                                         from_space='lab', white_from = 'D65', method='cie2000'))
  # # # takes about a half minute to run
  # # # user  system elapsed
  # # # 89.07    0.43   89.65 
  #
  # x[lower.tri(x, diag = TRUE)] <- NA # convert 0 to NA to ignore in stats
  # xdat <- x

  # TODO: ... some unholy indexry I cant quite figure out; the stats are right but order is wrong

  # this one that takes 2x as long to built the LUT, and is 2x as big in memory
  # user  system elapsed 
  # 190.73    0.73  194.42
  system.time(
    x <- farver::compare_colour(from = munsell[,c('L','A','B')], from_space = 'lab',
                              to = munsell[,c('L','A','B')], to_space = 'lab',
                              method = 'cie2000', white_from = 'D65', white_to = 'D65')
  )
  
  xdat <- x
  x[lower.tri(x, diag = TRUE)] <- NA 
  # remove lower triangle for statistics (only count each pair distance 1x)

  # roughly dE00 ~ 2.24 -- this is close to the perceptible limit of average human color vision with "good" lighting
  # calculate quantiles
  xqtl <- quantile(x, p = threshold, na.rm = TRUE)[1]

  # storing just the chips that fall within the closest e.g. tenth of a percentile: ~1.4MB in memory as list
  # 
  # TODO: consider applications of a matrix (rather than vector) at defined dE00 levels
  # 
  xin1 <- apply(xdat, 1, function(xrow) as.integer(which(xrow <= xqtl)))

  # # ALTERNATIVE THRESHOLDS
  # ## calculate unique threshold for each row (results in way too many "similar" chips)
  # rowthresholds <- apply(x, 1, function(xrow) quantile(xrow, p = threshold, na.rm = TRUE)[1])
  # xin2 <- lapply(1:nrow(x), function(i) as.integer(which(xdat[i,] <= rowthresholds[i])))
  #
  # ## mean of row-wise quantiles - slightly higher than the global threshold
  # rowthreshbar <- mean(apply(x, 1, function(xrow) quantile(xrow, p = threshold, na.rm = TRUE)[1]), na.rm=TRUE)
  # xin3 <- apply(xdat, 1, function(xrow) as.integer(which(xrow <= rowthreshbar)))
  #
  # ## DEBUG plots
  # # inspect the distribution of dE00 and threshold values
  # par(mfrow=c(2,1))
  # plot(density(x, na.rm=TRUE, from=0), xlim=c(0,130),
  #      main = "Between-whole-chip dE00 -- aqp::munsell pair-wise differences",
  #      sub = sprintf("Dotted vertical lines denote row-wise quantiles @ prob=%s", threshold))
  #
  # # # inspect visual cutoff by method 1 and 3
  # abline(v = rowthresholds, lty=3, col=rgb(0,0,0,0.1))# rowwise quantile at threshold
  #
  # # # row-wise quantiles
  # plot(density(rowthresholds, na.rm=TRUE, from=0), lty = 3, xlim = c(0,130),
  #      main = sprintf("Threshold for 'equivalent' whole-chip dE00 @ prob=%s", threshold))
  # abline(v = xqtl[1], lty=1, lwd=2, col="red")
  # abline(v = rowthreshbar, lty=3, lwd=2, col="blue")  #
  # legend("topright", legend = c(sprintf("Density plot of row-wise dE00 quantiles (@ prob=%s)",
  #                                       threshold),
  #                               sprintf("Global quantile (dE00=%s @ prob=%s)",
  #                                       round(xqtl[1], 2), threshold),
  #                               sprintf("Global mean of row-wise quantile (dE00=%s @ prob=%s)",
  #                                       round(rowthreshbar,2), threshold)),
  #        lty = c(3,1,3), lwd = c(1,2,2), col = c("BLACK","RED","BLUE"))

  # # number of chips per chip
  # par(mfrow=c(1,1))
  # plot(density(sapply(xin1, length), bw=1))
  # lines(density(sapply(xin2, length), bw=1), lty=2)
  # lines(density(sapply(xin3, length), bw=1), lty=3)

  # create a nice lookup table to add to aqp
  equivalent_munsell <- xin1
  names(equivalent_munsell) <- sprintf("%s %s/%s", munsell$hue, munsell$value, munsell$chroma)

  # this is only 107kB written to Rda
  # save(equivalent_munsell, file="data/equivalent_munsell.rda")

  return(equivalent_munsell)
}

#' Identify "equivalent" (whole number value/chroma) Munsell chips
#'
#' @description 
#' 
#' Uses a pre-calculated lookup list (\code{\link{equivalent_munsell}}) based on pair-wise CIE2000 contrast (\code{dE00}) of LAB color with D65 illuminant for all whole value/chroma "chips" in the \code{aqp::munsell} data set. 
#' 
#' The intention is to identify Munsell chips that may be "functionally equivalent" to some other given whole value/chroma chip elsewhere in the Munsell color space -- as discretized in the \code{aqp::munsell} data table. This basic assumption needs to be validated against your end goal: probably by visual inspection of some or all of the resulting sets. See \code{\link{colorContrast}} and \code{\link{colorContrastPlot}}.
#'
#' "Equivalent" chips table are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default Type 7 \code{quantile}) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a \code{dE00} contrast threshold of approximately 2.15. 

#' @param hue A character vector containing Munsell hues
#' @param value A numeric vector containing Munsell values (integer only)
#' @param chroma A numeric vector containing Munsell chromas (integer only)
#'
#' @return A named list; Each list element contains a data.frame with one or more rows of "equivalent" Munsell, RGB and LAB color coordinates from \code{munsell} data set.
#' 
#' @seealso \code{\link{colorContrast}} \code{\link{colorContrastPlot}} \code{\link{equivalent_munsell}} 
#' @references
#' 
#' Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
#' 
#' Thomas Lin Pedersen, Berendea Nicolae and Romain François (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver
#'  
#' Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193
#'
#' @export
#'
#' @examples
#'
#' # 7.5YR 4/4 (the one and only)
#' 
#' equivalentMunsellChips("7.5YR", 4, 4)
#' #>
#' #> $`7.5YR 4/4`
#' #>        hue value chroma         r        g         b        L       A       B
#' #> 8330 7.5YR     4      4 0.4923909 0.352334 0.2313328 41.26403 10.8689 23.5914
#' 
#' # 7.5YR 1/1 (two chips are equivalent; 3 row result)
#' 
#' equivalentMunsellChips("7.5YR", 1, 1)
#' #>
#' #> $`7.5YR 1/1`
#' #>        hue value chroma         r         g          b        L        A        B
#' #> 1983  10YR     1      1 0.1345633 0.1087014 0.07606787 10.64787 1.621323 6.847629
#' #> 6189   5YR     1      1 0.1330994 0.1076359 0.09450179 10.63901 2.489012 3.515146
#' #> 8303 7.5YR     1      1 0.1329483 0.1082380 0.08862581 10.64210 2.065514 4.623922
#' 
#' # 10YR 6/8 (two chips are equivalent; 3 row result)
#' 
#' equivalentMunsellChips("10YR", 6, 8)
#' #>
#' #> $`10YR 6/8`
#' #>       hue value chroma         r         g         b        L        A        B
#' #> 2039 10YR     6      7 0.7382230 0.5512957 0.2680260 61.76795 10.50886 44.78574
#' #> 2040 10YR     6      8 0.7519872 0.5472116 0.2157209 61.77496 11.83215 51.15496
#' #> 2041 10YR     6      9 0.7642826 0.5433189 0.1559069 61.78085 13.09599 57.49773
#' 
#' # compare visually a very red color
#' 
#' veryred <- equivalentMunsellChips("10R", 6, 28)[[1]]
#' 
#' par(mar=c(0,0,1,1))
#' 
#' pie(rep(1, nrow(veryred)), col = with(veryred, munsell2rgb(hue, value, chroma)),
#'     label = with(veryred, sprintf("%s %s/%s", hue, value, chroma)))
#' 
#' table(veryred$hue) # 2 hues
#' #> 
#' #>  10R 7.5R 
#' #>    8   17
#' 
#' table(veryred$value) # 2 values
#' #> 
#' #>  5  6 
#' #> 11 14
#' 
#' table(veryred$chroma) # 10 chromas
#' #> 
#' #> 21 22 23 24 25 26 27 28 29 30 
#' #>  1  2  2  3  3  4  3  3  2  2
#'
equivalentMunsellChips <- function(hue = NULL, value = NULL, chroma = NULL) {

  equivalent_munsell <- NULL
  load(system.file("data/equivalent_munsell.rda", package = "aqp")[1])

  munsell <- NULL
  load(system.file("data/munsell.rda", package = "aqp")[1])

  chipdata <- data.frame(.id = 1:pmax(length(hue), length(value), length(chroma)),
                         hue = hue, value = value, chroma = chroma)

  lidx <- lapply(chipdata$.id, function(x) {
    # TODO: handle half values? e.g. 7.5YR 2.5/2?
    which(munsell$hue == chipdata$hue[x] &
            munsell$value == chipdata$value[x] &
            munsell$chroma == chipdata$chroma[x])
  })
  res <- lapply(lidx, function(i) munsell[equivalent_munsell[i][[1]],])
  names(res) <- sprintf("%s %s/%s", hue, value, chroma)
  rownames(res) <- NULL
  return(res)
}

Try the aqp package in your browser

Any scripts or data that you put into this service are public.

aqp documentation built on Sept. 11, 2024, 7:11 p.m.