Fibulae: Bronze La Tene fibulae from Munsingen, Switzerland

Description Usage Format Details Source References Examples

Description

The La Tène fibulae from the Iron Age cemetery of Münsingen near Berne, Switzerland (100 - 500 BCE) described by F. R. Hodson (1968).

Usage

1
data("Fibulae")

Format

A data frame with 30 observations on the following 16 variables.

Grave

Grave number

Mno

Museum number

FL

Foot Length

BH

Bow Height

BFA

Bow Front Angle

FA

Foot Angle

CD

Coil Diameter

BRA

Bow Rear Angle

ED

Element Diameter

FEL

Foot Extension Length

C

Catchplate

BW

Bow Width

BT

Bow Thickness

FEW

Foot Extension Width

Coils

Number of Coils

Length

Total Length

Details

The La Tène fibulae from the Iron Age cemetery of Münsingen near Berne, Switzerland were reported by F. R. Hodson (1968). They were featured in several papers by Hodson over the years and used to illustrate a variety of multivariate statistical techniques. The data here were taken from Doran and Hodson (1975), Table 9.1. These are the raw measurements including 5 missing values in foot extension thickness and 1 in foot extension length.

Source

Doran, J. E. and F. R. Hodson. 1975. Mathematics and Computers in Archaeology. Harvard University Press, Cambridge, Massachusetts.

Hodson, F. R. 1968. The La Tène Cemetery at Műnsingen-Rain. Stampfli, Berne.

References

Carlson, David L. 2017. Quantitative Methods in Archaeology Using R. Cambridge University Press, pp 88-91, 95-99, 103-109, 127-129, 132-138, 162-169.

Hodson, F. R., P. H. A. Sneath, J. E. Doran. 1966. Some Experiments in the Numerical Analysis of Archaeological Data. Biometrika 53: 311-324.

Hodson, F. R. 1969. Searching for Structure within Multivariate Archaeological Data. World Archaeology 1: 90-105.

Hodson, F. R. 1970. Cluster Analysis and Archaeology: some New Developments and Applications. World Archaeology 1: 299-320.

Hodson, F. R. 1971. Numerical Typology and Prehistoric Archaeology. In Mathematics int eh Archaeological and Historical Sciences, edited by F. R. Hodson, D. G. Kendall and P. Tautu, pp 30-45. Edinburgh University Press, Edinburgh.

Sneath, P. H. A. 1968. Goodness of Intuitive Arrangements into Time Trends Based on Complex Pattern. Systematic Zoology 17: 256-260.

Examples

1
2
3
data(Fibulae)
t(sapply(Fibulae[, 3:16], quantile, na.rm=TRUE))
plot(density(Fibulae$Length, bw="SJ"), main="Kernel Density Plot of Length")

Example output

         0%   25%   50%    75%  100%
FL      9.0 19.25 21.50 28.750  94.0
BH      7.0 15.00 15.50 18.000  26.0
BFA     1.0  1.00  2.00  4.000   7.0
FA      6.0  8.00  8.00  9.000  10.0
CD      4.0  6.00  7.00  9.000  16.0
BRA     1.0  1.00  2.00  3.750   7.0
ED      2.0  5.00  8.00  9.750  14.0
FEL     0.0  4.00  7.00 11.000  50.0
C       8.0 11.25 15.00 18.000  50.0
BW      2.0  4.00  5.65  8.175  17.6
BT      1.4  3.05  3.85  4.775   7.7
FEW     0.0  1.90  2.50  3.900   8.6
Coils   3.0  4.00  6.00  6.000  22.0
Length 26.0 41.75 49.50 59.750 128.0

archdata documentation built on Jan. 16, 2021, 5:35 p.m.