plotLSDerrors.alldiffs | R Documentation |
Produces a plot of the errors that occur in using the computed LSD values for
pairwise differences predictions by comparing the result obtained from using the
LSDs stored in the assignedLSD
column of the LSD
component of
the alldiffs.object
with those computed from the sed
component using the t
-value for the df
stored in the tdf
attribute of the alldiffs.object
.
The sed
component is generally a matrix whose rows and columns
are labelled by the levels of one or more factors, the set of labels being
the same for rows and columns. The sections
argument allows multiple
plots to be produced, one for each combination of the levels of the factors
listed in sections
. Otherwise, a single plot is produced for all
observed combinations of the levels of the factors in the classify
attribute for the alldiffs.object
. The plots are produced using
plotLSDerrors.data.frame
. The order of plotting the levels of
one of the factors indexing the predictions can be modified using
sort.alldiffs
.
plotLSDerrors(object, ...)
## S3 method for class 'alldiffs'
plotLSDerrors(object, alpha = 0.05, useIntervals = FALSE,
sections = NULL, gridspacing = 0, factors.per.grid = 0,
triangles = "both", title = NULL,
axis.labels = TRUE, axis.text.size = 12,
sep=",", colours = c("white","blue","red","grey"),
ggplotFuncs = NULL, printPlot = TRUE,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, ...)
object |
An |
alpha |
A |
useIntervals |
A |
sections |
A |
gridspacing |
A |
factors.per.grid |
A |
triangles |
A |
title |
A |
axis.labels |
A |
axis.text.size |
A |
sep |
A |
colours |
A vector of colours to be passed to the |
ggplotFuncs |
A |
printPlot |
A |
sortFactor |
A |
sortParallelToCombo |
A |
sortNestingFactor |
A |
sortOrder |
A The following creates a |
decreasing |
A |
... |
Provision for passsing arguments to functions called internally - not used at present. |
A list
with components named LSDresults
and plots
.
The LSDresults
component contains the data.frame
with the columns Rows
,
Columns
, LSDresults
, sections1
and sections2
. This data.frame
is formed using the LSD
and sed
components of object
and is used
by plotLSDerrors.data.frame
in producng the plots. The plots
component contains a list of ggplot
objects, one for each plot produced.
Multiple plots are stored in the plots
component if the sections
argument
is set and the plots are are named for the levels combinations of the sections.
Chris Brien
plotLSDerrors.alldiffs
, plotLSDerrors.data.frame
,
plotLSDs.data.frame
,
exploreLSDs
, sort.alldiffs
, subset.alldiffs
,
ggplot
##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")
##Use asreml to get predictions and associated statistics
## Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),
random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)
current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",
asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))
## End(Not run)
## Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
## Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
## Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)
}
## Plot LSD values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{
plotLSDerrors(TS.diffs, gridspacing = rep(c(3,4), c(4,2)))
plotLSDerrors(TS.diffs, sections = "Sources", axis.labels = TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.