| renewClassify.alldiffs | R Documentation |
alldiffs.object according to a new classify.The classify is an attribute of an alldiffs.object and determines
the order within the components of an unsorted alldiffs.object.
This function resets the classify attribute and re-orders the components of
alldiffs.object to be in standard order for the variables in a
newclassify, using allDifferences.data.frame. The newclassify
may be just a re-ordering of the variable names in the previous classify, or be
based on a new set of variable names. The latter is particularly useful when
linTransform.alldiffs has been used with a matrix and it
is desired to replace the resulting Combination classify with a
newclassify comprised of a more meaningful set of variables; first replace
Combination in the predictions component with the new set of variables
and then call renewClassify.
## S3 method for class 'alldiffs'
renewClassify(alldiffs.obj, newclassify,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL, decreasing = FALSE, ...)
alldiffs.obj |
An |
newclassify |
A |
sortFactor |
A |
sortParallelToCombo |
A |
sortNestingFactor |
A |
sortOrder |
A The following creates a |
decreasing |
A |
... |
further arguments passed to |
First, the components of the alldiffs.object is arranged in standard order for
the newclassify. Then predictions are reordered according to the settings of
sortFactor, sortParallelToCombo, sortOrder and decreasing (see
sort.alldiffs for details).
The alldiffs.object supplied with the following components,
if present, sorted: predictions, vcov, backtransforms, differences,
p.differences and sed. Also, the sortFactor and sortOrder
attributes are set.
Chris Brien
as.alldiffs, allDifferences.data.frame,
print.alldiffs, sort.alldiffs,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, predictPresent.asreml
data(WaterRunoff.dat)
##Use asreml to get predictions and associated statistics
## Not run:
#Analyse pH
m1.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),
random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)
current.asrt <- as.asrtests(m1.asr, NULL, NULL)
current.asrt <- as.asrtests(m1.asr)
current.asrt <- rmboundary(current.asrt)
m1.asr <- current.asrt$asreml.obj
#Get predictions and associated statistics
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",
asreml.obj = m1.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))
## End(Not run)
## Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
#Analyse pH
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
## Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
## Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds,
classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)
}
#Re-order predictions from asreml or lmerTest so all Sources for the same Type are together
#for each combination of A and B
if (exists("TS.diffs"))
{
TS.diffs.reord <- renewClassify(TS.diffs, newclassify = "Type:Sources")
validAlldiffs(TS.diffs.reord)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.