renewClassify.alldiffs | R Documentation |
alldiffs.object
according to a new classify.The classify
is an attribute of an alldiffs.object
and determines
the order within the components of an unsorted alldiffs.object
.
This function resets the classify
attribute and re-orders the components of
alldiffs.object
to be in standard order for the variables in a
newclassify
, using allDifferences.data.frame
. The newclassify
may be just a re-ordering of the variable names in the previous classify
, or be
based on a new set of variable names. The latter is particularly useful when
linTransform.alldiffs
has been used with a matrix
and it
is desired to replace the resulting Combination
classify
with a
newclassify
comprised of a more meaningful set of variables; first replace
Combination
in the predictions
component with the new set of variables
and then call renewClassify
.
## S3 method for class 'alldiffs'
renewClassify(alldiffs.obj, newclassify,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL, decreasing = FALSE, ...)
alldiffs.obj |
An |
newclassify |
A |
sortFactor |
A |
sortParallelToCombo |
A |
sortNestingFactor |
A |
sortOrder |
A The following creates a |
decreasing |
A |
... |
further arguments passed to |
First, the components of the alldiffs.object
is arranged in standard order for
the newclassify
. Then predictions are reordered according to the settings of
sortFactor
, sortParallelToCombo
, sortOrder
and decreasing
(see
sort.alldiffs
for details).
The alldiffs.object
supplied with the following components,
if present, sorted: predictions
, vcov
, backtransforms
, differences
,
p.differences
and sed
. Also, the sortFactor
and sortOrder
attributes are set.
Chris Brien
as.alldiffs
, allDifferences.data.frame
,
print.alldiffs
, sort.alldiffs
,
redoErrorIntervals.alldiffs
, recalcLSD.alldiffs
,
predictPlus.asreml
, predictPresent.asreml
data(WaterRunoff.dat)
##Use asreml to get predictions and associated statistics
## Not run:
#Analyse pH
m1.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),
random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)
current.asrt <- as.asrtests(m1.asr, NULL, NULL)
current.asrt <- as.asrtests(m1.asr)
current.asrt <- rmboundary(current.asrt)
m1.asr <- current.asrt$asreml.obj
#Get predictions and associated statistics
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",
asreml.obj = m1.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))
## End(Not run)
## Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
#Analyse pH
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
## Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
## Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds,
classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)
}
#Re-order predictions from asreml or lmerTest so all Sources for the same Type are together
#for each combination of A and B
if (exists("TS.diffs"))
{
TS.diffs.reord <- renewClassify(TS.diffs, newclassify = "Type:Sources")
validAlldiffs(TS.diffs.reord)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.