pwrLaw: Generate power law (1/f) noise surrogates

pwrLawR Documentation

Generate power law (1/f) noise surrogates

Description

Generate power law (1/f) noise surrogates, following the algorithm of Timmer and Konig (1995).

Usage

pwrLaw(npts=1024,dt=1,mean=0,sdev=1,beta=2,fcut=0,nsim=1,genplot=T,verbose=T)

Arguments

npts

number of data points for 1/f surrogate time series

dt

sampling interval

mean

mean value for 1/f surrogate series

sdev

standard deviation for 1/f surrogate series

beta

power law coefficient. Positive number will yield a negative slope.

fcut

frequency cutoff: below this frequency a plateau will be modeled. Set to zero (default) for no plateau.

nsim

Number of surrogate series to generate

genplot

generate summary plots (T or F)

verbose

verbose output (T or F)

Details

These simulations use the random number generator of Matsumoto and Nishimura (1998). Power law noise series are generated following the algorithm of Timmer and Konig (1995).

References

M. Matsumoto, and T. Nishimura, (1998), Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, 8, 3-30.

J. Timmer and K. Konig (1995), On Generating Power Law Noise, Astronomy and Astrophysics: v. 300, p. 707-710.


astrochron documentation built on Sept. 30, 2024, 9:14 a.m.