Nothing
#' @title Plot LIFT in D3 with r2d3 package.
#'
#' @description LIFT is a plot of the rate of positive prediction against true positive rate for the different thresholds.
#' It is useful for measuring and comparing the accuracy of the classificators.
#'
#' @param object An object of class 'auditor_model_evaluation' created with \code{\link{model_evaluation}} function.
#' @param ... Other 'auditor_model_evaluation' objects to be plotted together.
#' @param scale_plot Logical, indicates whenever the plot should scale with height. By default it's FALSE.
#' @param zeros Logical. It makes the lines start from the \code{(0,0)} point. By default it's \code{TRUE}.
#'
#' @return a \code{r2d3} object
#'
#' @seealso \code{\link{plot_lift}}
#'
#' @examples
#' data(titanic_imputed, package = "DALEX")
#'
#' # fit a model
#' model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)
#'
#' glm_audit <- audit(model_glm,
#' data = titanic_imputed,
#' y = titanic_imputed$survived)
#'
#' # validate a model with auditor
#' eva_glm <- model_evaluation(glm_audit)
#'
#' # plot results
#' plot_roc(eva_glm)
#' plot(eva_glm)
#'
#' #add second model
#' model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)
#' glm_audit_2 <- audit(model_glm_2,
#' data = titanic_imputed,
#' y = titanic_imputed$survived,
#' label = "glm2")
#' eva_glm_2 <- model_evaluation(glm_audit_2)
#'
#' plotD3_lift(eva_glm, eva_glm_2)
#'
#' @export
#' @rdname plotD3_lift
plotD3_lift <- function(object, ..., scale_plot = FALSE, zeros = TRUE) {
# some safeguard
rpp <- tp <- label <- NULL
x_title <- "Rate of positive prediction"
y_title <- "True positive"
chart_title <- "LIFT Chart"
n <- length(list(object, ...))
# check if passed object is of class "modelResiduals" or "modelAudit"
check_object(object, type = "eva")
df1 <- as.data.frame(object)
for (resp in list(...)) {
resp <- as.data.frame(resp)
df1 <- rbind(df1, resp)
}
# take only columns required to plot LIFT curve
df1 <- df1[, c("_rpp_", "_tp_","_cutoffs_", "_label_")]
colnames(df1) <- c("rpp","tp","cutoffs","label")
if (zeros && df1$rpp[1] != 0) {
models <- levels(df1$label)
df1$label <- as.numeric(df1$label)
for (i in 1:length(models)) {
df1 <- rbind(df1, c(0, 0, 0, i))
}
df1 <- df1[order(df1$label, df1$rpp), ]
df1$label <- factor(df1$label, labels = models)
}
# prepare data frame for ideal and dummy model
pr <- sum(object$`_y_` == levels(factor(object$`_y_`))[2]) / length(object$`_y_`)
ideal_df <- data.frame(rpp = c(0, pr, 1),
tp = c(0, max(df1$tp), max(df1$tp)),
cutoffs = c(0,0,0),
label = c("ideal", "ideal", "ideal"))
random_df <- data.frame(rpp = c(0, 1),
tp = c(0, max(df1$tp)),
cutoffs = c(0,1),
label = c("random", "random"))
df2 <- rbind(ideal_df, random_df)
df <- rbind(df2, df1)
#:#
ymax <- max(df$tp)
ymin <- min(df$tp)
line_data <- split(df, f = df$label)
temp <- jsonlite::toJSON(list(line_data[c("ideal","random")],
line_data[setdiff(names(line_data), c("ideal","random"))]))
options <- list(ymax = ymax, ymin = ymin,
scalePlot = scale_plot, n = n,
xTitle = x_title, yTitle = y_title, chartTitle = chart_title)
r2d3::r2d3(data = temp, script = system.file("d3js/plotLIFT.js", package = "auditor"),
dependencies = list(
system.file("d3js/colorsDrWhy.js", package = "auditor"),
system.file("d3js/d3-tip.js", package = "auditor"),
system.file("d3js/hackHead.js", package = "auditor")
),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
}
#' @rdname plotD3_lift
#' @export
plotD3LIFT <- function(object, ..., scale_plot = FALSE) {
warning("Please note that 'plotD3LIFT()' is now deprecated, it is better to use 'plotD3_lift()' instead.")
plotD3_lift(object, ..., scale_plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.