Nothing
#' @title Receiver Operating Characteristic (ROC) in D3 with r2d3 package.
#'
#' @description Receiver Operating Characteristic Curve is a plot of the true positive rate (TPR)
#' against the false positive rate (FPR) for the different thresholds.
#' It is useful for measuring and comparing the accuracy of the classificators.
#'
#' @param object An object of class \code{auditor_model_evaluation} created with \code{\link{model_evaluation}} function.
#' @param ... Other \code{auditor_model_evaluation} objects to be plotted together.
#' @param nlabel Number of cutoff points to show on the plot. Default is \code{NULL}.
#' @param scale_plot Logical, indicates whenever the plot should scale with height. By default it's \code{FALSE}.
#'
#' @return a \code{r2d3} object
#'
#' @seealso \code{\link{plot_roc}}
#'
#' @examples
#' data(titanic_imputed, package = "DALEX")
#'
#' # fit a model
#' model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)
#'
#' # use DALEX package to wrap up a model into explainer
#' glm_audit <- audit(model_glm,
#' data = titanic_imputed,
#' y = titanic_imputed$survived)
#'
#' # validate a model with auditor
#' eva_glm <- model_evaluation(glm_audit)
#'
#' # plot results
#' plot_roc(eva_glm)
#' plot(eva_glm)
#'
#' #add second model
#' model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)
#' glm_audit_2 <- audit(model_glm_2,
#' data = titanic_imputed,
#' y = titanic_imputed$survived,
#' label = "glm2")
#' eva_glm_2 <- model_evaluation(glm_audit_2)
#'
#' plotD3_roc(eva_glm, eva_glm_2)
#'
#' @export
#' @rdname plotD3_roc
plotD3_roc <- function(object, ..., nlabel = NULL, scale_plot = FALSE) {
x_title <- "False positive fraction"
y_title <- "True positive franction"
chart_title <- "ROC Curve"
# check if passed object is of class "modelResiduals" or "modelAudit"
check_object(object, type = "eva")
# prepare data frame for the ggplot object
df <- as.data.frame(object)
for (resp in list(...)) {
resp <- as.data.frame(resp)
df <- rbind(df, resp)
}
# if cutoff points should be placed on the chart
n_models <- length(unique(df$`_label_`))
len_model <- nrow(df) / n_models
inds <- c()
if (!is.null(nlabel)) {
inds <- floor(seq(1, len_model, length.out = nlabel))
inds <- as.vector(sapply(1:n_models, function(x) c(inds + (len_model * (x - 1)))))
}
# new varibale to set an order o curves
df$`_label_` <- factor(df$`_label_`)
df <- as.data.frame(df[,c('_fpr_','_tpr_','_cutoffs_','_label_')])
colnames(df) <- c("fpr","tpr","curoffs","label")
df$big <- FALSE
df$big[inds] <- TRUE
if (df$tpr[1] != 0) {
models <- levels(df$label)
df$label <- as.numeric(df$label)
for (i in 1:length(models)) {
df <- rbind(df, c(0, 0, 0, i))
}
df <- df[order(df$label, df$tpr), ]
df$label <- factor(df$label, labels = models)
}
line_data <- split(df, f = df$label)
temp <- jsonlite::toJSON(list(line_data))
options <- list(scalePlot = scale_plot, n = n_models,
xTitle = x_title, yTitle = y_title,
chartTitle = chart_title)
r2d3::r2d3(data = temp, script = system.file("d3js/plotROC.js", package = "auditor"),
dependencies = list(
system.file("d3js/colorsDrWhy.js", package = "auditor"),
system.file("d3js/d3-tip.js", package = "auditor"),
system.file("d3js/hackHead.js", package = "auditor")
),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.