Nothing
#' Visualization of Shapley Values from the BARP Model
#'
#'
#' This function is implemented to visualize the computed Shapley values in
#' various ways for objects of the \code{Explainbarp} class. The type of plot
#' generated depends on the input parameters.
#' Since the BARP model is designed to be visualized for a single stratum,
#' the user must specify both the stratum variable and the value of the stratum to be visualized.
#'
#' @param x An \code{ExplainBARP} class object containing the Shapley values of the BARP model.
#' @param average Input the reference value for calculating the mean of the object's phi list.
#' \code{"obs"} represents the average based on observations (#post by #variable),
#' while \code{"post"} represents the average based on posterior samples (#obs by #variable).
#' If \code{"both"} is entered, calculations are performed based on both observation and posterior sample criteria.
#' If no value is specified, "both" is used as the default.
#' @param title The title of the plot, with a default value of \code{NULL}.
#' @param type \code{"bar"} represents a bar chart that includes the average contribution of each variable,
#' while \code{"bee"} represents a summary plot, allowing you to determine the graph's format.
#' @param num_post To check the contribution of variables for a single posterior sample,
#' enter a value within the number of posterior samples.
#' @param adjust The default value is \code{FALSE}.
#' Enter \code{TRUE} to check the Shapley values adjusted based on the model's average contribution.
#' @param plot.flag If \code{average = "obs"}, the quantile interval of each variable's is provided by default.
#' @param probs Enter the probability for the quantile interval. The default value is \code{0.95}.
#' @param geo.unit Enter the name of the stratification variable used in post stratification.
#' @param geo.id Enter one value of interest among the values of the stratification variable.
#' @param ... Additional arguments to be passed
#' @return The plot is returned based on the specified option.:
#' \item{out}{If average is \code{"obs"} or \code{"post"}, a bar plot or summary plot is generated based on
#'the selected averaging criterion. If average is \code{"both"}, a boxplot is displayed to
#'show the distribution of Shapley values computed using both criteria.
#' If adjust is \code{TRUE}, the adjusted Shapley values are displayed.
#' If \code{num_post} is specified, a bar plot or summary plot for the selected posterior sample is generated.}
#' @importFrom dplyr n
#' @importFrom dplyr mutate
#' @export
plot.Explainbarp <- function(x, average = NULL, type = NULL, num_post= NULL,
plot.flag=TRUE, adjust= FALSE, probs=0.95, title=NULL,geo.unit=NULL,geo.id=NULL,...){
if (!inherits(x, "Explainbarp") ) {
stop("The input object must be of class 'Explainbarp'.")
return(invisible(NULL))
} else if (missing(x) ) {
stop("The object containing the Shapley values of models obtained from the 'Explain' function is missing.")
return(invisible(NULL))
}
object <- x;
value <- variable <- n <- Average_re <- 0;
geo_check <- str_split(colnames(object$newdata), paste0( geo.unit,"_"),simplify = T)[,2]
index <- which (object$newdata [, which(geo_check==geo.id)] == 1 )
if (isFALSE (adjust) & is.null(average)){
warning("By default, a plot of type 'both' is printed.\n",
"If you want to calculate the average based on observations, enter 'obs'.\n",
"If you want to calculate the average based on the posterior sample, enter 'post'.\n",
"To compare the results based on observation and posterior sample, enter 'both'.",call. = FALSE)
average <- "both"
}
if(isTRUE (adjust)) {
baseline <- object$fnull[ object $fnull[ ,geo.unit]==geo.id,2]
feature_names <- names(object$newdata) [which(geo_check=="")]
new_data <- object$newdata [index, geo_check =="" ]
# Compute mean and variance of posterior samples
acomb <- function(...) abind(..., along = 3)
phis.stats <- foreach(i = feature_names, .combine = "acomb") %do% {
cbind(rowMeans( object$phis[[i]][ index, ] ),
apply( object$phis[[i]][ index, ] , MARGIN = 1, FUN = var ))
}
for (i in seq_len(dim(phis.stats)[1L])) { # loop through each observation
err <- object$fx [ index ]- sum(phis.stats[i, 1L, ]) - object$fnull[object$fnull[,geo.unit] ==geo.id ,2]
if( max(phis.stats[i, 2L, ])==0) { v <- 0 } else {
v <- (phis.stats[i, 2L, ] / max(phis.stats[i, 2L, ])) * 1e6 }
adj <- err[i] * (v - (v * sum(v)) / (1 + sum(v)))
phis.stats[i, 1L, ] <- phis.stats[i, 1L, ] + adj # adjust Shapley estimate
}
phis_adj <- phis.stats[, 1L, ]
phis_adj <- as.data.frame(phis_adj)
names ( phis_adj ) <- feature_names
for ( i in names (phis_adj) ){
temp_i <- which ( new_data [,i] !=1)
phis_adj[temp_i,i] <- NA
}
# Exclude cases where all values are not estimated.
phis_adj <- phis_adj[, colSums(is.na(phis_adj)) != nrow(phis_adj)]
local_obs <- long_data ( phis_adj, normalize = TRUE, absolute = TRUE)
if (isTRUE(type =="bar")| is.null (type)){
# bar plot
Local_mean <- as.data.frame(abs(phis_adj))
sample_summary <- local_obs$long %>% filter (is.na (value)==F) %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
select (c("variable","n")) %>% distinct(.keep_all = T)
sample_zero <- local_obs$long %>% filter (is.na (value)==F) %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
filter(value==0) %>% mutate (zero =n()) %>% distinct(.keep_all = T) %>% select(c("variable", "zero"))
sample_summary <- left_join(sample_summary, sample_zero, by = "variable" )
sample_summary [which(is.na(sample_summary$zero)), "zero"] <- 0
sample_summary$percent <- paste0(sprintf("%.1f", round(sample_summary$zero/sample_summary$n*100, 1)) ,"%")
out <- bar_plot (Local_mean,probs = NULL, plot.flag = FALSE ,title )
ymin <- (- diff(range(out$coordinates$limits$y)) * 0.02)
out <- out +
annotate("text",x= sample_summary$variable , y = ymin,
hjust = 1, label = sample_summary$percent , size = 3.5)
print(out)
} else if (isTRUE( type == "bees")){
# summary plot
out <- summary_plot (local_obs,title )
print(out)
}
}
else {
if ( isTRUE(average =="obs") ){
new_data <- object$newdata [index, geo_check =="" ]
temp_phis <- foreach(i = 1:length(object$phis)) %do% {
object$phis[[i]][index,]
}
names (temp_phis) <- names (object$phis)
for ( i in names (temp_phis)){
temp_i <- which ( new_data [,i] !=1)
temp_phis[[i]][temp_i,] <- NA
}
# Average based on observation= #post by #variable
obs_mean_shap <- foreach(i = 1 : length(object$phis), .combine = 'cbind') %do% {
apply( temp_phis[[i]] , 2, function(x) {mean(abs(x),na.rm = T)})
}
colnames(obs_mean_shap) <- names(object$phis)
# Exclude cases where all values are not estimated.
obs_mean_shap <- obs_mean_shap[, colSums(is.nan(obs_mean_shap)) != nrow(obs_mean_shap)]
out <- bar_plot (obs_mean_shap, probs, plot.flag= T,title )
print ( out )
if ( isTRUE(type =="bees") ) {
message("In Average based on observation,\n a barplot is also provided by entering type='bees'.")
}
} else if ( isTRUE(average =="post") ){
if (is.null(num_post)){
new_data <- object$newdata [index, geo_check =="" ]
# Average based on posterior sample = #obs by #variable
post_mean_shap <- foreach(i = 1: length(object$phis), .combine = 'cbind' ) %do% {
apply(object$phis[[i]][index,], 1, function(x) {mean(x)})
}
colnames(post_mean_shap) <- names(object$phis)
for ( i in colnames(post_mean_shap)){
temp_i <- which ( new_data [,i] !=1)
post_mean_shap[temp_i,i] <- NA
}
# Exclude cases where all values are not estimated.
post_mean_shap <- post_mean_shap[, colSums(is.na (post_mean_shap)) != nrow(post_mean_shap)]
# Change data format & mean values => local_total is List
local_total <- long_data(post_mean_shap, normalize = TRUE, absolute = TRUE)
if (isTRUE(type =="bar")| is.null (type)){
# bar plot
Local_mean <- as.data.frame(abs(post_mean_shap))
sample_summary <- local_total$long %>% filter (is.na (value)==F) %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
select (c("variable","n")) %>% distinct(.keep_all = T)
sample_zero <- local_total$long %>% filter (is.na (value)==F) %>%
select(c("variable", "value"))%>% group_by(variable) %>% mutate (n=n()) %>%
filter(value==0) %>% mutate (zero =n()) %>% distinct(.keep_all = T) %>% select(c("variable", "zero"))
sample_summary <- left_join(sample_summary, sample_zero, by = "variable" )
sample_summary [which( is.na(sample_summary$zero)), "zero"] <- 0
sample_summary$percent <- paste0(sprintf("%.1f", round(sample_summary$zero/sample_summary$n*100, 1)) ,"%")
out <- bar_plot (Local_mean, probs = NULL, plot.flag = FALSE,title )
ymin <- (- diff(range(out$coordinates$limits$y)) * 0.02)
out <- out +
annotate("text",x= sample_summary$variable, y = ymin,
hjust = 1, label = sample_summary$percent , size = 3.5)
print ( out )
} else if (isTRUE( type == "bees")){
# summary plot
out <- summary_plot (local_total,title )
print ( out )
}
} else if (isFALSE (is.null(num_post)) ){
# num_post th posterior sample = #obs by #variable
obs <- foreach(i = 1: length(object$phis), .combine = 'cbind') %do% {
object$phis[[i]][index, num_post]
}
colnames(obs) <- names(object$phis)
new_data <- object$newdata [index, geo_check =="" ]
for ( i in colnames(obs) ){
temp_i <- which ( new_data [,i] !=1)
obs[temp_i,i] <- NA
}
# Exclude cases where all values are not estimated.
obs <- obs[, colSums(is.na (obs)) != nrow(obs)]
local_obs <- long_data (obs, normalize = TRUE, absolute = TRUE)
if (isTRUE(type == "bees") | is.null (type)){
# Local SHAP summary plot - i th posterior
out <- summary_plot (local_obs ,title)
annotate_figure(out, top = text_grob(paste0("Sample number = ", num_post),
hjust = 1, x = 0.95,vjust = 1.05, size = 10 ))
} else if (isTRUE(type == "bar")) {
out <- bar_plot (abs(obs),probs =NULL, plot.flag = FALSE,title )
sample_summary <- local_obs$long %>% filter (is.na (value)==F) %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
select (c("variable","n")) %>% distinct(.keep_all = T)
sample_zero <- local_obs$long %>% filter (is.na (value)==F)%>%
select(c("variable", "value"))%>% group_by(variable) %>% mutate (n=n())%>%
filter(value==0) %>% mutate (zero =n()) %>% distinct(.keep_all = T) %>% select(c("variable", "zero"))
sample_summary <- left_join(sample_summary, sample_zero, by = "variable" )
sample_summary [which( is.na(sample_summary$zero)), "zero"] <- 0
sample_summary$ percent <- paste0(sprintf("%.1f", round(sample_summary$zero/sample_summary$n*100, 1)) ,"%")
ymin <- (- diff(range(out$coordinates$limits$y)) * 0.02)
out <- out +
annotate("text",x= sample_summary$variable, y = ymin,
hjust = 1, label = sample_summary$percent , size = 3.5)
annotate_figure(out, top = text_grob(paste0("Sample number = ", num_post),
hjust = 1, x = 0.95,vjust = 1.05, size = 10 ))
}
}
}else if ( isTRUE(average =="both") ){
new_data <- object$newdata [index , geo_check =="" ]
temp_phis <- foreach(i = 1 : length(object$phis) ) %do% {
object$phis[[i]][index,]
}
names (temp_phis) <- names (object$phis)
for ( i in names (temp_phis) ){
temp_i <- which ( new_data [,i] !=1)
temp_phis[[i]][temp_i,] <- NA
}
# Average based on observation= #post by #variable
obs_mean_shap <- as.data.frame( foreach(i = 1 : length(object$phis), .combine = 'cbind' ) %do% {
apply( temp_phis[[i]] , 2, function(x) {mean(abs(x),na.rm = T)})
})
colnames(obs_mean_shap) <- names(object$phis)
# Exclude cases where all values are not estimated.
obs_mean_shap <- obs_mean_shap[, colSums(is.na (obs_mean_shap)) != nrow(obs_mean_shap)]
mean_obs <- colMeans(obs_mean_shap) [order( colMeans(obs_mean_shap), decreasing = TRUE) ]
mean_obs <- as.data.frame(mean_obs)
names (mean_obs) <- "mean"
mean_obs$Average <- "Observation"
mean_obs$variable <- obs_variable <- rownames (mean_obs)
obs_mean_shap$Average <- "Observation"
obs_mean_shap$ID <- rownames(obs_mean_shap)
# Average based on posterior sample = #obs by #variable
post_mean_shap <- as.data.frame(foreach(i = 1: length(object$phis), .combine = 'cbind' ) %do% {
apply( object$phis[[i]][index,] , 1, function(x) {abs(mean(x))})
})
colnames(post_mean_shap) <- names(object$phis)
for ( i in colnames(post_mean_shap)){
temp_i <- which (new_data [,i] !=1)
post_mean_shap[temp_i,i] <- NA
}
# Exclude cases where all values are not estimated.
post_mean_shap <- post_mean_shap[, colSums(is.na (post_mean_shap)) != nrow(post_mean_shap)]
mean_post <- colMeans(post_mean_shap,na.rm = T) [order( colMeans(post_mean_shap,na.rm = T ), decreasing = TRUE) ]
mean_post <- as.data.frame(mean_post)
names (mean_post) <- "mean"
mean_post$Average <- "Samples"
mean_post$variable <- rownames (mean_post)
post_mean_shap$Average <- "Samples"
post_mean_shap$ID <- rownames(post_mean_shap)
total_mean_shap <- rbind (obs_mean_shap, post_mean_shap )
total_long <- melt(total_mean_shap, id =c('ID',"Average"))
total_long$Average_re <- fct_rev( total_long$Average )
mean_data <- rbind (mean_obs, mean_post)
mean_data$Average_re <- fct_rev( mean_data$Average)
data_list <- list(total_long = total_long, mean_data = mean_data)
if ( is.null (type) | isTRUE(type == "bees")) {
ymax <- max (data_list$total_long$value, na.rm = T) * (1+0.001)
ymin <- (- diff(range(data_list$total_long$value, na.rm = T))*0.05)
range_p <- (ymax-ymin)*0.02
left_p <- data_list$total_long %>% filter (is.na (value)==F & Average_re=="Observation") %>%
ggplot( aes(x= variable, y=value, fill= Average_re)) +
geom_boxplot() + coord_flip() + theme_bw(base_size = 11) +
labs(fill = "", x="",y="Mean(|SHAP|)") +
scale_x_discrete(limits = rev(obs_variable),
labels = rev(obs_variable))+
scale_fill_manual(values=c( "#F8766D"))+
theme(legend.position = c(0.8, 0.2), legend.background=element_blank()) + ylim(ymin, ymax )
sample_summary <- data_list$total_long %>% filter (is.na (value)==F & Average_re=="Samples") %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
select (c("variable","n")) %>% distinct(.keep_all = T)
sample_zero <- data_list$total_long %>% filter (is.na (value)==F & Average_re=="Samples" ) %>%
select(c("variable", "value")) %>% group_by(variable) %>% mutate (n=n()) %>%
filter(value==0) %>% mutate (zero =n()) %>% distinct(.keep_all = T) %>% select(c("variable", "zero"))
sample_summary <- left_join(sample_summary, sample_zero, by = "variable" )
sample_summary [which( is.na(sample_summary$zero)), "zero"] <- 0
sample_summary$percent <- paste0(sprintf("%.1f", round(sample_summary$zero/sample_summary$n*100, 1)) ,"%")
right_p <- data_list$total_long %>% filter (is.na (value)==F & Average_re=="Samples")%>%
ggplot( aes(x= variable, y=value, fill= Average_re )) +
geom_boxplot() + coord_flip() + theme_bw(base_size = 11) +
labs(fill = "", x="",y="Mean(|SHAP|)") +
scale_x_discrete(limits = rev(obs_variable),
labels = rev(obs_variable))+
scale_fill_manual(values=c( "#00BFC4"))+
theme(legend.position = c(0.8, 0.2), legend.background=element_blank()) + ylim(ymin, ymax )
right_p <- right_p + annotate("text",x= sample_summary$variable,
y = - range_p,
hjust = 1, label = sample_summary$percent , size = 3 )
grid.arrange(left_p, right_p, ncol= 1, top=textGrob(title, x = 0.2, hjust = 0 ) )
if ( isTRUE(type =="bees") ) {
message("In Average = 'both',\n a baxplot is also provided by entering type='bees'.")
}
} else if (isTRUE(type == "bar") ){
out <- ggplot( data_list$mean_data, aes(x= variable, y= mean, fill = Average_re )) +
geom_bar( stat = "identity" , position="dodge") +coord_flip() + theme_bw(base_size = 11) +
scale_fill_manual(values=c("#00BFC4","#F8766D"))+
labs(fill = "Criteria for average ", x="",y="Mean(|SHAP|)") +
scale_x_discrete(limits = rev(obs_variable), labels = rev(obs_variable)) +
ylim(c(0,max( data_list$mean_data$mean) ))+
geom_text(aes( label = sprintf("%.3f",round(mean,3)) ),
hjust ="inward", size= 3.5, position = position_dodge(width=0.9))+
theme(legend.position = "bottom")
if(!is.null(title)) {
out <- out + ggtitle(title)
}
print(out)
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.