R/beam.R

Defines functions beam_range beam_distance beam_profile_overlap beam_profile_overlap_help beam_profile gaussian_beam_profile_internal gaussian_beam_profile beam_width_internal beam_width earth_radius beam_height_internal beam_height

Documented in beam_distance beam_height beam_profile beam_profile_overlap beam_range beam_width gaussian_beam_profile

#' Calculate radar beam height
#'
#' Calculates the height of a radar beam as a function of elevation and range,
#' assuming the beam is emitted at surface level.
#'
#' @param range Numeric. Slant range, i.e. the length of the skywave path
#'   between target and the radar antenna, in m.
#' @param elev Numeric. Beam elevation, in degrees.
#' @param k Numeric. Standard refraction coefficient.
#' @param lat Numeric. Geodetic latitude of the radar, in degrees.
#' @param re Numeric. Earth equatorial radius, in km.
#' @param rp Numeric. Earth polar radius, in km.
#'
#' @returns numeric. Beam height in m.
#'
#' @export
#'
#' @seealso
#' * [beam_width()]
#'
#' @details
#' To account for refraction of the beam towards the earth's surface, an
#' effective earth's radius of `k` * (true radius) is assumed, with `k` = 4/3.
#'
#' The earth's radius is approximated as a point on a spheroid surface, with
#' `re` the longer equatorial radius, and `rp` the shorter polar
#' radius. Typically uncertainties in refraction coefficient are relatively
#' large, making oblateness of the earth and the dependence of earth radius with
#' latitude only a small correction. Using default values assumes an average
#' earth's radius of 6371 km.
#'
#' @family beam_functions
#' @examples
#' # Beam height in meters at 10 km range for a 1 degree elevation beam:
#' beam_height(10000, 1)
#'
#' # Beam height in meters at 10 km range for a 3 and 5 degree elevation beam:
#' beam_height(10000, c(3, 5))
#'
#' # Define ranges from 0 to 1000000 m (100 km), in steps of 100 m:
#' range <- seq(0, 100000, 100)
#'
#' # Plot the beam height of the 0.5 degree elevation beam:
#' plot(range, beam_height(range, 0.5), ylab = "beam height [m]", xlab = "range [m]")
beam_height <- function(range, elev, k = 4 / 3, lat = 35, re = 6378,
                        rp = 6357) {
  assertthat::assert_that(is.numeric(range))
  assertthat::assert_that(is.numeric(elev))
  assertthat::assert_that(length(range) == length(elev) | length(range) == 1 | length(elev) == 1,
    msg = "`range` and `elev` should either be equal length or either should have a length of one"
  )
  assertthat::assert_that(assertthat::is.number(k))
  assertthat::assert_that(assertthat::is.number(lat))
  assertthat::assert_that(assertthat::is.number(re))
  assertthat::assert_that(assertthat::is.number(rp))
  beam_height_internal(range = range, elev = elev, k = k, lat = lat, re = re, rp = rp)
}

beam_height_internal <- function(range, elev, k = 4 / 3, lat = 35, re = 6378,
                                 rp = 6357) {
  sqrt(
    range^2 + (k * earth_radius(re, rp, lat))^2 +
      2 * range * (k * earth_radius(re, rp, lat)) * sin(elev * pi / 180)
  ) - k * earth_radius(re, rp, lat)
}

earth_radius <- function(a, b, lat) {
  lat <- lat * pi / 180
  1000 * sqrt(
    ((a^2 * cos(lat))^2 + (b^2 * sin(lat))^2) /
    ((a * cos(lat))^2 + (b * sin(lat))^2)
  )
}

#' Calculate radar beam width
#'
#' Calculates the width of a radar beam as a function of range and beam angle.
#'
#' @param range Numeric. Range, i.e. distance from the radar antenna, in m.
#' @param beam_angle Numeric. Beam opening angle in degrees, typically the
#'   angle between the half-power (-3 dB) points of the main lobe.
#'
#' @return numeric. Beam width in m, typically the full width at half maximum (FWHM).
#'
#' @export
#' @family beam_functions
#' @examples
#' #' # Beam width in meters at 10 km range:
#' beam_width(10000)
#'
#' # Define ranges from 0 to 1000000 m (100 km), in steps of 100 m:
#' range <- seq(0, 100000, 100)
#'
#' # Plot the beam width as a function of range:
#' plot(range, beam_width(range), ylab = "beam width [m]", xlab = "range [m]")
beam_width <- function(range, beam_angle = 1) {
  assertthat::assert_that(is.numeric(range))
  assertthat::assert_that(assertthat::is.number(beam_angle))
  beam_width_internal(range = range, beam_angle = beam_angle)
}

beam_width_internal <- function(range, beam_angle = 1) {
  range * sin(beam_angle * pi / 180)
}

#' Gaussian beam profile as a function of height
#'
#' Normalized altitudinal pattern of radiated energy as a function of altitude
#' at a given distance from the radar. `antenna` and `height` should be given in
#' reference to the same reference plane (e.g. ground level or sea level).
#'
#' @inheritParams beam_height
#' @inheritParams beam_width
#' @param antenna Numeric. Height of the centre of the radar antenna, in m.
#' @param height Numeric. Height in m.
#'
#' @family beam_functions
#' @return numeric.
#'
#' @details Beam profile is calculated using [beam_height] and [beam_width]. `height` and
#' `antenna` should be given in reference to the same reference plane (e.g. ground level or sea level)
#'
#' @keywords internal
gaussian_beam_profile <- function(height, range, elev, antenna = 0,
                                  beam_angle = 1, k = 4 / 3, lat = 35, re = 6378,
                                  rp = 6357) {
  assertthat::assert_that(is.numeric(height))
  assertthat::assert_that(is.numeric(range))
  assertthat::assert_that(all(range >= 0),
                          msg = "range must be positive.")
  assertthat::assert_that(assertthat::is.number(elev))
  assertthat::assert_that(assertthat::is.number(antenna))
  assertthat::assert_that(assertthat::is.number(beam_angle))
  assertthat::assert_that(!is.infinite(beam_angle),
                          msg = "beam_angle can't be infinite.")
  assertthat::assert_that(all(beam_angle > 0),
                          msg = "beam_angle must be positive.")
  assertthat::assert_that(assertthat::is.number(k))
  assertthat::assert_that(!is.infinite(k),
                          msg = "k can't be infinite.")
  assertthat::assert_that(assertthat::is.number(lat))
  assertthat::assert_that(lat <= 90)
  assertthat::assert_that(lat >= -90)
  assertthat::assert_that(assertthat::is.number(rp))
  assertthat::assert_that(!is.infinite(rp),
                          msg = "rp can't be infinite.")
  assertthat::assert_that(assertthat::is.number(re))
  assertthat::assert_that(!is.infinite(re),
                          msg = "re can't be infinite.")
  gaussian_beam_profile_internal(
    height = height, range = range, elev = elev, antenna = antenna,
    beam_angle = beam_angle, k = k, lat = lat, re = re,
    rp = rp
  )
}

gaussian_beam_profile_internal <- function(height, range, elev, antenna = 0,
                                           beam_angle = 1, k = 4 / 3, lat = 35, re = 6378,
                                           rp = 6357) {
  stats::dnorm(
    height,
    mean = antenna + beam_height_internal(
      range = range, elev = elev, k = k,
      lat = lat, re = re, rp = rp
    ), sd = beam_width_internal(
      range = range, beam_angle =
        beam_angle
    ) / (2 * sqrt(2 * log(2)))
  )
}

#' Calculate vertical radiation profile
#'
#' Calculates for a set of beam elevations (`elev`) the altitudinal normalized
#' distribution of radiated energy by those beams. Is a function of altitude
#' (`height`) at a given distance (`distance`) from the radar, assuming the
#' beams are emitted at antenna level
#'
#' @inheritParams gaussian_beam_profile
#' @inheritParams beam_range
#' @param elev Numeric vector. Beam elevation(s), in degrees.
#'
#' @return Numeric vector. Normalized radiated energy at each of the specified
#'   heights.
#'
#' @family beam_functions
#' @export
#'
#' @details Beam profile is calculated using [beam_height] and
#'   [beam_width]. Returns a beam profile as a function of height relative
#'   to ground level.
#'
#'   Returns the normalized altitudinal pattern of radiated energy as a function
#'   of altitude at a given distance from the radar, assuming the beams are
#'   emitted at antenna level.
#'
#' @examples
#' # Plot the beam profile, for a 0.5 degree elevation beam at 50 km distance
#' # from the radar:
#' plot(beam_profile(height = 0:4000, 50000, 0.5), 0:4000,
#'   xlab = "normalized radiated energy",
#'   ylab = "height [m]", main = "beam elevation: 0.5 deg, distance=50km"
#' )
#'
#' # Plot the beam profile, for a 2 degree elevation beam at 50 km distance
#' # from the radar:
#' plot(beam_profile(height = 0:4000, 50000, 2), 0:4000,
#'   xlab = "normalized radiated energy",
#'   ylab = "height [m]", main = "beam elevation: 2 deg, distance=50km"
#' )
#'
#' # Plot the combined beam profile for a 0.5 and 2.0 degree elevation beam
#' # at 50 km distance from the radar:
#' plot(beam_profile(height = 0:4000, 50000, c(0.5, 2)), 0:4000,
#'   xlab = "normalized radiated energy",
#'   ylab = "height [m]", main = "beam elevations: 0.5,2 deg, distance=50km"
#' )
beam_profile <- function(height, distance, elev, antenna = 0, beam_angle = 1,
                         k = 4 / 3, lat = 35, re = 6378, rp = 6357) {
  assertthat::assert_that(is.numeric(height))
  assertthat::assert_that(is.numeric(distance))
  assertthat::assert_that(is.numeric(elev))
  assertthat::assert_that(assertthat::is.number(antenna))
  assertthat::assert_that(assertthat::is.number(beam_angle))
  assertthat::assert_that(assertthat::is.number(k))
  assertthat::assert_that(assertthat::is.number(lat))
  assertthat::assert_that(assertthat::is.number(rp))
  assertthat::assert_that(assertthat::is.number(re))
  assertthat::assert_that(sum(c(length(height), length(distance))>1)<2,
              msg='`height` and `distance` not have an unequal length when more then one. ')

  # calculate radiation pattern
  rowSums(
    do.call(cbind, lapply(elev, function(x) {
      gaussian_beam_profile_internal(height, beam_range(distance, x, k = k, lat = lat, re = re, rp = rp),
        x,
        antenna = antenna, beam_angle = beam_angle, lat = lat, k = k, re = re,
        rp = rp
      )
    }))
  ) / length(elev)
}

# helper function for beam_profile_overlap()
beam_profile_overlap_help <- function(vp, elev, distance, antenna = 0,
                                      zlim = c(0, 4000), steps = 500,
                                      quantity = "dens", normalize = TRUE,
                                      beam_angle = 1, k = 4 / 3, lat, re = 6378,
                                      rp = 6357) {
  # define altitude grid
  height <- seq(zlim[1], zlim[2], length.out = steps)
  # calculate altitudinal radiation pattern of all radar beams combined
  beamprof <- beam_profile(
    height = height, distance = distance, elev = elev,
    antenna = antenna, lat = lat, beam_angle =
      beam_angle, k = k, re = re, rp = rp
  )
  # normalize the distribution
  step <- (zlim[2] - zlim[1]) / (steps - 1)
  if (normalize) beamprof <- beamprof / sum(beamprof * step)
  # output as data.frame
  beamprof <- data.frame(height = height, radiation = beamprof)
  # linearly interpolate the density of the vertical profile at the same grid as beamprof above
  if (all(is.na(vp$data[[quantity]]))) {
    beamprof$vpr <- NA
  } else {
    quantity_data <- vp$data[[quantity]]
    # set NA values to zero
    quantity_data[is.na(quantity_data)] <- 0
    beamprof$vpr <- stats::approxfun(
      vp$data$height + vp$attributes$where$interval / 2,
      quantity_data
    )(height)
  }
  # normalize the vertical profile density
  step <- (zlim[2] - zlim[1]) / (steps - 1)
  beamprof$vpr <- beamprof$vpr / sum(step * beamprof$vpr, na.rm = TRUE)
  # calculate the Bhattacharyya coefficient of the density profile and radiation coverage pattern
  sum(step * sqrt(beamprof$radiation * beamprof$vpr), na.rm = TRUE)
}

#' Calculate overlap between a vertical profile ('vp') and the vertical
#' radiation profile emitted by the radar
#'
#' Calculates the distribution overlap between a vertical profile ('vp') and the
#' vertical radiation profile of a set of emitted radar beams at various
#' elevation angles as given by [beam_profile].
#'
#' This function also calculates the `overlap` quantity in the output of
#' [integrate_to_ppi].
#' @inheritParams beam_height
#' @inheritParams beam_width
#' @param vp A `vp` object.
#' @param elev Numeric vector. Beam elevation(s), in degrees.
#' @param distance Numeric. The distance(s) from the radar along sea level (down
#'   range) for which to calculate the overlap, in m.
#' @param antenna Numeric. Radar antenna height, in m. Default to antenna height
#'   in `vp`.
#' @param zlim Numeric vector of length two. Altitude range, in m
#' @param noise_floor Numeric. The system noise floor in dBZ. The total system
#'   noise expressed as the reflectivity factor it would represent at a distance
#'   `noise_floor_ref_range` from the radar. NOT YET IMPLEMENTED
#' @param noise_floor_ref_range Numeric. The reference distance from the radar
#'   at which `noise_floor` is expressed. NOT YET IMPLEMENTED.
#' @param steps Numeric. Number of integration steps over altitude range `zlim`,
#'   defining altitude grid size used for numeric integration.
#' @param quantity Character. Profile quantity (`dens` or `eta`) to use for the
#'   altitude distribution.
#' @param normalize Logical. If `TRUE`, normalize the radiation coverage pattern
#'   over the altitude range specified by `zlim`.
#' @param lat Numeric. Radar latitude. Defaults to latitude in `vp`.
#'
#' @return A data.frame with columns `distance` and `overlap`.
#'
#' @export
#' @family beam_functions
#'
#' @seealso
#' * [beam_height()]
#' * [beam_width()]
#' * [beam_profile()]
#'
#' @details
#' Overlap is calculated as the [Bhattacharyya
#' coefficient](https://en.wikipedia.org/wiki/Bhattacharyya_distance) (i.e.
#' distribution overlap) between the (normalized) vertical profile (`vp`) and
#' the (normalized) radiation coverage pattern as calculated by
#' [beam_profile()]. In the calculation of this overlap metric, `NA` and `NaN`
#' values in the profile quantity specified by `quantity` are replaced with
#' zeros.
#'
#' The current implementation does not (yet) take into account the system noise
#' floor when calculating the overlap.
#'
#' In the ODIM data model the attribute `/how/NEZ` or `/how/NEZH` specifies the
#' system noise floor (the Noise Equivalent Z or noise equivalent reflectivity
#' factor. the H refers to the horizontal channel of a dual-polarization radar).
#' In addition, the attribute `/how/LOG` gives "security distance above mean
#' noise level (dB) threshold value". This is equivalent to the log receiver
#' signal-to-noise ratio, i.e. the dB above the noise floor for the signal
#' processor to report a valid reflectivity value. We recommend using `NEZH +
#' LOG` for `noise_floor`, as this is the effective noise floor of the system
#' below which no data will be reported by the radar signal processor.
#'
#' Typical values are `NEZH` = -45 to -50 dBZ at 1 km from the radar. `LOG` is
#' typically around 1 dB.
#'
#' Need to evaluate beam by beam the returned signal relative to a uniform beam
#' filling of at least `NEZH + LOG` If returned signal is lower, the gate is
#' below noise level.
#'
#' @examples
#' # Read the polar volume example file
#' pvolfile <- system.file("extdata", "volume.h5", package = "bioRad")
#'
#' # Read the corresponding vertical profile example
#' pvol <- read_pvolfile(pvolfile)
#'
#' # let us use this example vertical profile:
#' data(example_vp)
#' example_vp
#'
#' # Calculate overlap between vertical profile of birds and the vertical
#' # radiation profile emitted by the radar
#' bpo <- beam_profile_overlap(
#'   example_vp,
#'   get_elevation_angles(pvol), seq(0, 100000, 1000)
#' )
#'
#' # Plot the calculated overlap:
#' plot(bpo)
beam_profile_overlap <- function(vp, elev, distance, antenna, zlim = c(0, 4000),
                                 noise_floor = -Inf, noise_floor_ref_range = 1,
                                 steps = 500, quantity = "dens", normalize = TRUE,
                                 beam_angle = 1, k = 4 / 3, lat, re = 6378,
                                 rp = 6357) {
  # min_detectable_eta <- dbz_to_eta(NEZH,vp$attributes$how$wavelength)*(range/1000)^2

  if (!is.numeric(elev)) stop("'elev' must be a number or numeric vector with the beam elevation(s)")
  if (!is.vp(vp)) stop("'vp' must be an object of class vp")
  if (missing(antenna)) antenna <- vp$attributes$where$height
  if (missing(lat)) lat <- vp$attributes$where$lat
  if (!is.numeric(distance) | min(distance) < 0) stop("'distance' should be a positive numeric value or vector")
  if (length(zlim) != 2 || !is.numeric(zlim)) stop("'zlim' should be a numeric vector of length two")
  if (is.na(zlim[1]) | is.na(zlim[2]) | zlim[1] > zlim[2]) stop("'zlim' should be a vector with two numeric values for upper and lower bound")
  if (length(steps) != 1 || !is.numeric(steps)) stop("'step' should be a numeric value")
  if (!(quantity %in% c("dens", "eta"))) stop("'quantity' should be one of 'dens' or 'eta'")
  if (is.null(vp$attributes$where$height) && (missing(antenna) || is.null(antenna))) stop("antenna height cannot be found in polar volume, specify antenna height using 'antenna' argument")
  assertthat::assert_that(assertthat::is.number(antenna))
  if (is.null(vp$attributes$where$lat) && (missing(lat) || is.null(lat))) stop("radar latitude cannot be found in polar volume, specify using 'lat' argument")
  assertthat::assert_that(assertthat::is.number(lat))
  overlap <- sapply(distance, function(x) beam_profile_overlap_help(vp = vp, elev = elev, distance = x, antenna = antenna, zlim = zlim, steps = steps, quantity = quantity, normalize = normalize, beam_angle = beam_angle, k = k, lat = lat, re = re, rp = rp))
  data.frame(distance = distance, overlap = overlap)
}

#' Calculate radar beam distance
#'
#' Calculates the distance as measured over the earth's surface (the down range)
#' for a given beam elevation and slant range.
#'
#' @inheritParams beam_height
#'
#' @return Beam distance (down range), in m.
#'
#' @seealso
#' * [beam_height()]
#'
#' @export
#'
#' @family beam_functions
#' @details depends on [beam_height] to calculate beam height.
#' @examples
#' # Down range of the 5 degree elevation beam at a slant range of 100 km:
#' beam_distance(100000, 5)
beam_distance <- function(range, elev, k = 4 / 3, lat = 35, re = 6378, rp = 6357) {
  er <- earth_radius(re, rp, lat)
  bh <- beam_height(range = range, elev = elev, k = k, lat = lat, re = re, rp = rp)
  er * acos((er^2 + (er + bh)^2 - range^2) / (2 * er * (er + bh)))
}

#' Calculate radar beam range
#'
#' Calculates the range (i.e. slant range) given a distance measured along the
#' earth's surface (i.e. down range) and beam elevation.
#'
#' @inheritParams beam_height
#' @param distance Numeric. Distance from the radar as measured along sea level
#'   (down range), in m.
#'
#' @return Beam range (slant range), in m.
#'
#' @export
#'
#' @family beam_functions
#' @details depends on [beam_height] to calculate beam height.
#' @examples
#' # Slant range of the 5 degree elevation beam at a down range of 100 km
#' beam_range(100000, 5)
beam_range <- function(distance, elev, k = 4 / 3, lat = 35, re = 6378, rp = 6357) {
  assertthat::assert_that(length(distance) == length(elev) | length(distance) == 1 | length(elev) == 1,
    msg = "`distance` and `elev` should either be equal length or either should have a length of one"
  )

  assertthat::assert_that(assertthat::is.number(k))
  assertthat::assert_that(assertthat::is.number(lat))
  assertthat::assert_that(assertthat::is.number(rp))
  assertthat::assert_that(assertthat::is.number(re))

  er <- earth_radius(re, rp, lat)
  # to do: simplify trigonometry below
  -((2 * er * k * (k + cos(distance / er)) * (sin(distance / (2. * er))^2) * sin((elev * pi) / 180.) +
    sqrt((er^2) * (-1 + cos(distance / er)) * ((-1 + k + cos(distance / er))^2) *
      (-1 - 2 * (-1 + k) * k + (1 - 2 * k) * cos(distance / er) +
        k^2 * (1 + cos(distance / er)) * sin((elev * pi) / 180.)^2)))) /
    (-((-1 + k + cos(distance / er))^2) + (k^2) * (sin((elev * pi) / 180.)^2))
}

Try the bioRad package in your browser

Any scripts or data that you put into this service are public.

bioRad documentation built on Sept. 11, 2024, 6:13 p.m.