Nothing
#' Community structure detection in weighted bipartite networks via modularity
#' optimization
#'
#' This function takes a bipartite weighted graph and computes modules by
#' applying Newman’s modularity measure in a bipartite weighted version.
#'
#' @param net A `data.frame` representing a bipartite network with the first
#' two columns representing undirected links between pairs of nodes, and the
#' next column(s) representing the weights of the links.
#'
#' @param weight A `boolean` indicating whether weights should be considered
#' if there are more than two columns (see Note).
#'
#' @param cut_weight A minimal weight value. If `weight` is TRUE, links
#' with weights strictly lower than this value will not be considered
#' (`0` by default).
#'
#' @param index The name or number of the column to use as weight. By default,
#' the third column name of `net` is used.
#'
#' @param seed The seed for the random number generator (`NULL` for random
#' by default).
#'
#' @param forceLPA A `boolean` indicating whether the even faster pure
#' LPA-algorithm of Beckett should be used. DIRT-LPA (the default) is less
#' likely to get trapped in a local minimum but is slightly slower. Defaults
#' to `FALSE`.
#'
#' @param site_col The name or number of the column for site nodes
#' (i.e., primary nodes).
#'
#' @param species_col The name or number of the column for species nodes
#' (i.e., feature nodes).
#'
#' @param return_node_type A `character` indicating which types of nodes
#' (`"site"`, `"species"`, or `"both"`) should be returned in the output
#' (`"both"` by default).
#'
#' @param algorithm_in_output A `boolean` indicating whether the original
#' output of [computeModules][bipartite::computeModules] should be returned
#' in the output (`TRUE` by default, see Value).
#'
#' @return
#' A `list` of class `bioregion.clusters` with five slots:
#' \enumerate{
#' \item{**name**: A `character` containing the name of the algorithm.}
#' \item{**args**: A `list` of input arguments as provided by the user.}
#' \item{**inputs**: A `list` of characteristics of the clustering process.}
#' \item{**algorithm**: A `list` of all objects associated with the
#' clustering procedure, such as original cluster objects (only if
#' `algorithm_in_output = TRUE`).}
#' \item{**clusters**: A `data.frame` containing the clustering results.}}
#'
#' If `algorithm_in_output = TRUE`, users can find the output of
#' [computeModules][bipartite::computeModules] in the `algorithm` slot.
#'
#' @details
#' This function is based on the modularity optimization algorithm provided by
#' Stephen Beckett (Beckett, 2016) as implemented in the
#' [bipartite](https://cran.r-project.org/package=bipartite)
#' package ([computeModules][bipartite::computeModules]).
#'
#' @note
#' Beckett's algorithm is designed to handle weighted bipartite networks. If
#' `weight = FALSE`, a weight of 1 will be assigned to each pair of nodes.
#' Ensure that the `site_col` and `species_col` arguments correctly identify
#' the respective columns for site nodes (primary nodes) and species nodes
#' (feature nodes). The type of nodes returned in the output can be selected
#' using the `return_node_type` argument: `"both"` to include both node types,
#' `"site"` to return only site nodes, or `"species"` to return only species
#' nodes.
#'
#' @seealso
#' For more details illustrated with a practical example,
#' see the vignette:
#' \url{https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html}.
#'
#' Associated functions:
#' [netclu_infomap] [netclu_louvain] [netclu_oslom]
#'
#' @references
#' Beckett SJ (2016) Improved community detection in weighted bipartite
#' networks. \emph{Royal Society Open Science} 3, 140536.
#'
#' @author
#' Maxime Lenormand (\email{maxime.lenormand@inrae.fr}) \cr
#' Pierre Denelle (\email{pierre.denelle@gmail.com}) \cr
#' Boris Leroy (\email{leroy.boris@gmail.com})
#'
#' @examples
#' net <- data.frame(
#' Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
#' Species = c("a", "b", "a", "c", "d", "b", "d"),
#' Weight = c(10, 100, 1, 20, 50, 10, 20))
#'
#' com <- netclu_beckett(net)
#'
#' @importFrom bipartite computeModules
#'
#' @export
netclu_beckett <- function(net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
forceLPA = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE){
# Controls inputs
if(!is.null(seed)){
controls(args = seed, data = NULL, type = "strict_positive_integer")
}
controls(args = forceLPA, data = NULL, type = "boolean")
controls(args = algorithm_in_output, data = NULL, type = "boolean")
controls(args = NULL, data = net, type = "input_net")
controls(args = NULL, data = net, type = "input_net_bip")
if(site_col == species_col){
stop("site_col and species_col should not be the same.", call. = FALSE)
}
controls(args = site_col, data = net, type = "input_net_bip_col")
controls(args = species_col, data = net, type = "input_net_bip_col")
controls(args = return_node_type, data = NULL, type = "character")
if(!(return_node_type %in% c("both", "site", "species"))) {
stop(paste0("Please choose return_node_type from the following:\n",
"both, sites or species."),
call. = FALSE)
}
# Convert tibble into dataframe
if(inherits(net, "tbl_df")){
net <- as.data.frame(net)
}
controls(args = weight, data = net, type = "input_net_weight")
if (weight) {
controls(args = cut_weight, data = net, type = "positive_numeric")
controls(args = index, data = net, type = "input_net_index")
net[, 3] <- net[, index]
net <- net[, 1:3]
controls(args = NULL, data = net, type = "input_net_index_positive_value")
}
# Prepare input
idprim <- as.character(net[, site_col])
idprim <- idprim[!duplicated(idprim)]
nbsites <- length(idprim)
idfeat <- as.character(net[, species_col])
idfeat <- idfeat[!duplicated(idfeat)]
idnode <- c(idprim, idfeat)
idnode <- data.frame(ID = 1:length(idnode), ID_NODE = idnode)
netemp <- data.frame(
node1 = idnode[match(net[, site_col], idnode[, 2]), 1],
node2 = idnode[match(net[, species_col], idnode[, 2]), 1])
if(weight) {
netemp <- cbind(netemp, net[, 3])
netemp <- netemp[netemp[, 3] > cut_weight,]
colnames(netemp)[3] <- "weight"
} else {
netemp$weight <- 1
}
# Class preparation
outputs <- list(name = "netclu_beckett")
outputs$args <- list(weight = weight,
cut_weight = cut_weight,
index = index,
seed = seed,
forceLPA = forceLPA,
site_col = site_col,
species_col = species_col,
return_node_type = return_node_type,
algorithm_in_output = algorithm_in_output)
outputs$inputs <- list(
bipartite = TRUE,
weight = weight,
pairwise = FALSE,
pairwise_metric = NA,
dissimilarity = FALSE,
nb_sites = nbsites,
hierarchical = FALSE)
outputs$algorithm <- list()
# Transform netemp into a contingency table
comat <- net_to_mat(netemp, weight = weight)
if(dim(comat)[1]<2 | dim(comat)[2]<2){
stop(paste0("At least two species and two sites are needed to run ",
"this algorithm. Please check your data or choose an ",
"appropriate cut_weight value."),
.call = FALSE)
}
# Run algo (with seed)
if(is.null(seed)){
outalg <- bipartite::computeModules(comat, forceLPA = forceLPA)
}else{
set.seed(seed)
outalg <- bipartite::computeModules(comat, forceLPA = forceLPA)
rm(.Random.seed, envir=globalenv())
}
comtemp <- outalg@modules[-1, -c(1, 2)]
comtemp <- cbind(c(as.numeric(rownames(comat)),
as.numeric(colnames(comat))),
apply(comtemp, 2, function(x) which(x > 0)))
com <- data.frame(ID = idnode[, 2], Com = NA)
com[match(comtemp[, 1], idnode[, 1]), 2] <- comtemp[, 2]
# Rename and reorder columns
com <- knbclu(com)
# Add attributes and return_node_type
attr(com, "node_type") <- rep("site", dim(com)[1])
attributes(com)$node_type[!is.na(match(com[, 1], idfeat))] <- "species"
if (return_node_type == "site") {
com <- com[attributes(com)$node_type == "site", ]
}
if (return_node_type == "species") {
com <- com[attributes(com)$node_type == "species", ]
}
# Set algorithm in outputs
if (!algorithm_in_output) {
outalg <- NA
}
outputs$algorithm <- outalg
# Set clusters and cluster_info in output
outputs$clusters <- com
outputs$cluster_info <- data.frame(
partition_name = names(outputs$clusters)[2:length(outputs$clusters),
drop = FALSE],
n_clust = apply(
outputs$clusters[, 2:length(outputs$clusters), drop = FALSE],
2, function(x) length(unique(x[!is.na(x)]))))
# Return outputs
class(outputs) <- append("bioregion.clusters", class(outputs))
return(outputs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.