Nothing
#' Community structure detection via greedy optimization of modularity
#'
#' This function finds communities in a (un)weighted undirected network via
#' greedy optimization of modularity.
#'
#' @param net The output object from [similarity()] or
#' [dissimilarity_to_similarity()].
#' If a `data.frame` is used, the first two columns represent pairs of
#' sites (or any pair of nodes), and the next column(s) are the similarity
#' indices.
#'
#' @param weight A `boolean` indicating if the weights should be considered
#' if there are more than two columns.
#'
#' @param cut_weight A minimal weight value. If `weight` is TRUE, the links
#' between sites with a weight strictly lower than this value will not be
#' considered (0 by default).
#'
#' @param index The name or number of the column to use as weight. By default,
#' the third column name of `net` is used.
#'
#' @param bipartite A `boolean` indicating if the network is bipartite
#' (see Details).
#'
#' @param site_col The name or number for the column of site nodes
#' (i.e. primary nodes).
#'
#' @param species_col The name or number for the column of species nodes
#' (i.e. feature nodes).
#'
#' @param return_node_type A `character` indicating what types of nodes
#' (`site`, `species` or `both`) should be returned in the output
#' (`return_node_type = "both"` by default).
#'
#' @param algorithm_in_output A `boolean` indicating if the original output
#' of [cluster_fast_greedy][igraph::cluster_fast_greedy] should be returned in
#' the output (`TRUE` by default, see Value).
#'
#' @return
#' A `list` of class `bioregion.clusters` with five slots:
#' \enumerate{
#' \item{**name**: `character` containing the name of the algorithm}
#' \item{**args**: `list` of input arguments as provided by the user}
#' \item{**inputs**: `list` of characteristics of the clustering process}
#' \item{**algorithm**: `list` of all objects associated with the
#' clustering procedure, such as original cluster objects (only if
#' `algorithm_in_output = TRUE`)}
#' \item{**clusters**: `data.frame` containing the clustering results}}
#'
#' In the `algorithm` slot, if `algorithm_in_output = TRUE`, users can
#' find the output of
#' [cluster_fast_greedy][igraph::cluster_fast_greedy].
#'
#' @details
#' This function is based on the fast greedy modularity optimization algorithm
#' (Clauset et al., 2004) as implemented in the
#' [igraph](https://cran.r-project.org/package=igraph)
#' package ([cluster_fast_greedy][igraph::cluster_fast_greedy]).
#'
#' @note
#' Although this algorithm was not primarily designed to deal with bipartite
#' network, it is possible to consider the bipartite network as unipartite
#' network (`bipartite = TRUE`).
#'
#' Do not forget to indicate which of the first two columns is
#' dedicated to the site nodes (i.e. primary nodes) and species nodes (i.e.
#' feature nodes) using the arguments `site_col` and `species_col`.
#' The type of nodes returned in the output can be chosen with the argument
#' `return_node_type` equal to `both` to keep both types of nodes,
#' `sites` to preserve only the sites nodes and `species` to
#' preserve only the species nodes.
#'
#' @seealso
#' For more details illustrated with a practical example,
#' see the vignette:
#' \url{https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html}.
#'
#' Associated functions:
#' [netclu_infomap] [netclu_louvain] [netclu_oslom]
#'
#' @references
#' Clauset A, Newman MEJ & Moore C (2004) Finding community structure in very
#' large networks. \emph{Phys. Rev. E} 70, 066111.
#'
#' @author
#' Maxime Lenormand (\email{maxime.lenormand@inrae.fr}) \cr
#' Pierre Denelle (\email{pierre.denelle@gmail.com}) \cr
#' Boris Leroy (\email{leroy.boris@gmail.com})
#'
#' @examples
#' comat <- matrix(sample(1000, 50), 5, 10)
#' rownames(comat) <- paste0("Site", 1:5)
#' colnames(comat) <- paste0("Species", 1:10)
#'
#' net <- similarity(comat, metric = "Simpson")
#' com <- netclu_greedy(net)
#'
#' net_bip <- mat_to_net(comat, weight = TRUE)
#' clust2 <- netclu_greedy(net_bip, bipartite = TRUE)
#'
#' @importFrom igraph graph_from_data_frame cluster_fast_greedy
#'
#' @export
netclu_greedy <- function(net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE) {
# Control input net (+ check similarity if not bipartite)
controls(args = bipartite, data = NULL, type = "boolean")
isbip <- bipartite
if(!isbip){
controls(args = NULL, data = net, type = "input_similarity")
}
controls(args = NULL, data = net, type = "input_net")
# Convert tibble into dataframe
if(inherits(net, "tbl_df")){
net <- as.data.frame(net)
}
# Control input weight & index
controls(args = weight, data = net, type = "input_net_weight")
if (weight) {
controls(args = cut_weight, data = net, type = "positive_numeric")
controls(args = index, data = net, type = "input_net_index")
net[, 3] <- net[, index]
net <- net[, 1:3]
controls(args = NULL, data = net, type = "input_net_index_positive_value")
}
# Control input bipartite
if (isbip) {
controls(args = NULL, data = net, type = "input_net_bip")
if(site_col == species_col){
stop("site_col and species_col should not be the same.", call. = FALSE)
}
controls(args = site_col, data = net, type = "input_net_bip_col")
controls(args = species_col, data = net, type = "input_net_bip_col")
controls(args = return_node_type, data = NULL, type = "character")
if (!(return_node_type %in% c("both", "site", "species"))) {
stop(paste0("Please choose return_node_type from the following:\n",
"both, sites or species."),
call. = FALSE)
}
}
# Control input loop or directed
controls(args = NULL, data = net, type = "input_net_isloop")
controls(args = NULL, data = net, type = "input_net_isdirected")
# Control algorithm_in_output
controls(args = algorithm_in_output, data = NULL, type = "boolean")
# Prepare input
if (isbip) {
idprim <- as.character(net[, site_col])
idprim <- idprim[!duplicated(idprim)]
nbsites <- length(idprim)
idfeat <- as.character(net[, species_col])
idfeat <- idfeat[!duplicated(idfeat)]
idnode <- c(idprim, idfeat)
idnode <- data.frame(ID = 1:length(idnode), ID_NODE = idnode)
netemp <- data.frame(
node1 = idnode[match(net[, site_col], idnode[, 2]), 1],
node2 = idnode[match(net[, species_col], idnode[, 2]), 1]
)
} else {
idnode1 <- as.character(net[, 1])
idnode2 <- as.character(net[, 2])
idnode <- c(idnode1, idnode2)
idnode <- idnode[!duplicated(idnode)]
nbsites <- length(idnode)
idnode <- data.frame(ID = 1:length(idnode), ID_NODE = idnode)
netemp <- data.frame(
node1 = idnode[match(net[, 1], idnode[, 2]), 1],
node2 = idnode[match(net[, 2], idnode[, 2]), 1]
)
}
if (weight) {
netemp <- cbind(netemp, net[, 3])
netemp <- netemp[netemp[, 3] > cut_weight, ]
colnames(netemp)[3] <- "weight"
}
# Class preparation
outputs <- list(name = "netclu_greedy")
outputs$args <- list(
weight = weight,
cut_weight = cut_weight,
index = index,
bipartite = bipartite,
site_col = site_col,
species_col = species_col,
return_node_type = return_node_type,
algorithm_in_output = algorithm_in_output)
outputs$inputs <- list(
bipartite = isbip,
weight = weight,
pairwise = ifelse(isbip, FALSE, TRUE),
pairwise_metric = ifelse(!isbip & weight,
ifelse(is.numeric(index), names(net)[3], index),
NA),
dissimilarity = FALSE,
nb_sites = nbsites,
hierarchical = FALSE)
outputs$algorithm <- list()
# Run algo
net <- igraph::graph_from_data_frame(netemp, directed = FALSE)
outalg <- igraph::cluster_fast_greedy(net)
comtemp <- cbind(as.numeric(outalg$names), as.numeric(outalg$membership))
com <- data.frame(ID = idnode[, 2], Com = NA)
com[match(comtemp[, 1], idnode[, 1]), 2] <- comtemp[, 2]
# Rename and reorder columns
com <- knbclu(com)
# Add attributes and return_node_type
if (isbip) {
attr(com, "node_type") <- rep("site", dim(com)[1])
attributes(com)$node_type[!is.na(match(com[, 1], idfeat))] <- "species"
if (return_node_type == "site") {
com <- com[attributes(com)$node_type == "site", ]
}
if (return_node_type == "species") {
com <- com[attributes(com)$node_type == "species", ]
}
}
# Set algorithm in outputs
if (!algorithm_in_output) {
outalg <- NA
}
outputs$algorithm <- outalg
# Set clusters and cluster_info in output
outputs$clusters <- com
outputs$cluster_info <- data.frame(
partition_name = names(outputs$clusters)[2:length(outputs$clusters),
drop = FALSE
],
n_clust = apply(
outputs$clusters[, 2:length(outputs$clusters), drop = FALSE],
2, function(x) length(unique(x[!is.na(x)]))))
# Return outputs
class(outputs) <- append("bioregion.clusters", class(outputs))
return(outputs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.