Nothing
#' Non-hierarchical clustering: Affinity Propagation
#'
#' This function performs non-hierarchical clustering using the Affinity
#' Propagation algorithm.
#'
#' @param similarity The output object from [similarity()] or
#' [dissimilarity_to_similarity()], or a `dist` object. If a `data.frame` is
#' used, the first two columns should represent pairs of sites (or any pair of
#' nodes), and the subsequent column(s) should contain the similarity indices.
#'
#' @param index The name or number of the similarity column to use. By default,
#' the third column name of `similarity` is used.
#'
#' @param seed The seed for the random number generator used when
#' `nonoise = FALSE`.
#'
#' @param p Input preference, which can be a vector specifying individual
#' preferences for each data point. If scalar, the same value is used for all
#' data points. If `NA`, exemplar preferences are initialized based on the
#' distribution of non-Inf values in the similarity matrix, controlled by `q`.
#'
#' @param q If `p = NA`, exemplar preferences are initialized according to the
#' distribution of non-Inf values in the similarity matrix. By default, the
#' median is used. A value between 0 and 1 specifies the sample quantile,
#' where `q = 0.5` results in the median.
#'
#' @param maxits The maximum number of iterations to execute.
#'
#' @param convits The algorithm terminates if the exemplars do not change for
#' `convits` iterations.
#'
#' @param lam The damping factor, a value in the range [0.5, 1). Higher values
#' correspond to heavier damping, which may help prevent oscillations.
#'
#' @param details If `TRUE`, detailed information about the algorithm's progress
#' is stored in the output object.
#'
#' @param nonoise If `TRUE`, disables the addition of a small amount of noise to
#' the similarity object, which prevents degenerate cases.
#'
#' @param K The desired number of clusters. If not `NULL`, the function
#' [apclusterK][apcluster::apclusterK] is called.
#'
#' @param prc A parameter needed when `K` is not `NULL`. The algorithm stops if
#' the number of clusters deviates by less than `prc` percent from the desired
#' value `K`. Set to 0 to enforce exactly `K` clusters.
#'
#' @param bimaxit A parameter needed when `K` is not `NULL`. Specifies the
#' maximum number of bisection steps to perform. No warning is issued if the
#' number of clusters remains outside the desired range.
#'
#' @param exact A flag indicating whether to compute the initial preference
#' range exactly.
#'
#' @param algorithm_in_output A `boolean` indicating whether to include the
#' original output of [apcluster][apcluster::apcluster] in the result. Defaults
#' to `TRUE`.
#'
#' @return
#' A `list` of class `bioregion.clusters` with five slots:
#' \enumerate{
#' \item{**name**: A `character` string containing the name of the algorithm.}
#' \item{**args**: A `list` of input arguments as provided by the user.}
#' \item{**inputs**: A `list` describing the characteristics of the clustering
#' process.}
#' \item{**algorithm**: A `list` of objects associated with the clustering
#' procedure, such as original cluster objects
#' (if `algorithm_in_output = TRUE`).}
#' \item{**clusters**: A `data.frame` containing the clustering results.}}
#'
#' If `algorithm_in_output = TRUE`, the `algorithm` slot includes the output of
#' [apcluster][apcluster::apcluster].
#'
#' @details
#' This function is based on the
#' [apcluster](https://cran.r-project.org/package=apcluster)
#' package ([apcluster][apcluster::apcluster]).
#'
#' @references
#' Frey B & Dueck D (2007) Clustering by Passing Messages Between Data Points.
#' \emph{Science} 315, 972-976.
#'
#' @seealso
#' For more details illustrated with a practical example,
#' see the vignette:
#' \url{https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html}.
#'
#' Associated functions:
#' [nhclu_clara] [nhclu_clarans] [nhclu_dbscan] [nhclu_kmeans] [nhclu_affprop]
#'
#' @author
#' Pierre Denelle (\email{pierre.denelle@gmail.com}) \cr
#' Boris Leroy (\email{leroy.boris@gmail.com}) \cr
#' Maxime Lenormand (\email{maxime.lenormand@inrae.fr})
#'
#' @examples
#' comat_1 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
#' prob = 1/1:1001), 10, 12)
#' rownames(comat_1) <- paste0("Site", 1:10)
#' colnames(comat_1) <- paste0("Species", 1:12)
#' comat_1 <- cbind(comat_1,
#' matrix(0, 10, 8,
#' dimnames = list(paste0("Site", 1:10),
#' paste0("Species", 13:20))))
#'
#' comat_2 <- matrix(sample(0:1000,
#' size = 10*12,
#' replace = TRUE,
#' prob = 1/1:1001),
#' 10, 12)
#' rownames(comat_2) <- paste0("Site", 11:20)
#' colnames(comat_2) <- paste0("Species", 9:20)
#' comat_2 <- cbind(matrix(0, 10, 8,
#' dimnames = list(paste0("Site", 11:20),
#' paste0("Species", 1:8))),
#' comat_2)
#'
#' comat <- rbind(comat_1, comat_2)
#'
#' dissim <- dissimilarity(comat, metric = "Simpson")
#' sim <- dissimilarity_to_similarity(dissim)
#'
#' clust1 <- nhclu_affprop(sim)
#'
#' clust2 <- nhclu_affprop(sim, q = 1)
#'
#' # Fixed number of clusters
#' clust3 <- nhclu_affprop(sim, K = 2, prc = 10, bimaxit = 20, exact = FALSE)
#'
#' @importFrom apcluster apcluster apclusterK
#'
#' @export
nhclu_affprop <- function(similarity,
index = names(similarity)[3],
seed = NULL,
p = NA,
q = NA,
maxits = 1000,
convits = 100,
lam = 0.9,
# includeSim = FALSE,
details = FALSE,
nonoise = FALSE,
K = NULL,
prc = NULL,
bimaxit = NULL,
exact = NULL,
algorithm_in_output = TRUE){
# 1. Controls ---------------------------------------------------------------
controls(args = NULL, data = similarity, type = "input_nhandhclu")
if(!inherits(similarity, "dist")){
controls(args = NULL, data = similarity, type = "input_similarity")
controls(args = NULL, data = similarity,
type = "input_data_frame_nhandhclu")
controls(args = index, data = similarity, type = "input_net_index")
net <- similarity
# Convert tibble into dataframe
if(inherits(net, "tbl_df")){
net <- as.data.frame(net)
}
net[, 3] <- net[, index]
net <- net[, 1:3]
controls(args = NULL, data = net, type = "input_net_index_value")
dist.obj <- stats::as.dist(
net_to_mat(net,
weight = TRUE,
squared = TRUE,
symmetrical = TRUE))
} else {
controls(args = NULL, data = similarity, type = "input_dist")
dist.obj <- similarity
if(is.null(labels(dist.obj))){
attr(dist.obj, "Labels") <- paste0(1:attr(dist.obj, "Size"))
message("No labels detected, they have been assigned automatically.")
}
}
if(!is.null(seed)){
controls(args = seed, data = NULL, type = "strict_positive_integer")
}
if(length(p) == 1){
if(!is.na(p)){
if(!is.null(p)){
controls(args = p, data = NULL, type = "numeric")
}
}
}else{
controls(args = p, data = NULL, type = "numeric_vector")
if(length(p) != length(unique(c(similarity[, 1], similarity[, 2])))){
stop(paste0("If p is a vector, its length should be equal to the ",
"number of sites."),
call. = FALSE)
}
}
if(length(q) > 1){
stop("q must be of length 1.", call. = FALSE)
}
if(!is.na(q)){
controls(args = q, data = NULL, type = "positive_numeric")
if(q < 0 | q > 1){
stop("q should be in the interval [0, 1].", call. = FALSE)
}
}
controls(args = maxits, data = NULL, type = "positive_integer")
controls(args = convits, data = NULL, type = "positive_integer")
controls(args = lam, data = NULL, type = "positive_numeric")
if(lam < 0.5 | lam >= 1){
stop("lam should be in the interval [0.5, 1).", call. = FALSE)
}
# controls(args = includeSim, data = NULL, type = "boolean")
controls(args = details, data = NULL, type = "boolean")
controls(args = nonoise, data = NULL, type = "boolean")
if(nonoise & !is.null(seed)){
message(paste0("A random number generator is used only when ",
"noise is added (nonoise = FALSE)."))
}
# Argument for desired number of clusters: positive integer, if not null
# (default value) then we call apcluter::apclusterK() (with argument K)
if(!is.null(K)){
controls(args = K, data = NULL, type = "strict_positive_integer")
if(is.null(prc)){
stop(paste0("When K is not NULL, you need to define prc. ",
"prc is a percentage value."), call. = FALSE)
}
if(is.null(bimaxit)){
stop("When K is not NULL, you need to define bimaxit.", call. = FALSE)
}
if(is.null(exact)){
stop("When K is not NULL, you need to define exact.", call. = FALSE)
}
}
if(!is.null(prc)){
if(is.null(K)){
message(paste0("prc argument will be considered only if K is not ",
"set to NULL."))
}
controls(args = prc, data = NULL, type = "positive_numeric")
if (prc < 0 | prc > 100) {
stop("prc should be in the interval [0, 100].")
}
}
if(!is.null(bimaxit)){
if(is.null(K)){
message(paste0("bimaxit argument will be considered only if K is not ",
"set to NULL."))
}
controls(args = bimaxit, data = NULL, type = "strict_positive_integer")
}
if(!is.null(exact)){
if(is.null(K)){
message(paste0("exact argument will be considered only if K is not ",
"set to NULL."))
}
controls(args = exact, data = NULL, type = "boolean")
}
controls(args = algorithm_in_output, data = NULL, type = "boolean")
sim <- NULL
# 2. Function ---------------------------------------------------------------
outputs <- list(name = "nhclu_affprop")
outputs$args <- list(index = index,
seed = seed,
p = p,
q = q,
maxits = maxits,
convits = convits,
lam = lam,
# includeSim = includeSim,
details = details,
nonoise = nonoise,
K = K,
prc = prc,
bimaxit = bimaxit,
exact = exact,
algorithm_in_output = algorithm_in_output)
outputs$inputs <- list(bipartite = FALSE,
weight = TRUE,
pairwise = TRUE,
pairwise_metric = ifelse(!inherits(similarity,
"dist"),
ifelse(is.numeric(index),
names(net)[3], index),
NA),
dissimilarity = FALSE,
nb_sites = attr(dist.obj, "Size"),
hierarchical = FALSE)
outputs$algorithm <- list()
outputs$clusters <- data.frame(matrix(ncol = 1,
nrow = length(labels(dist.obj)),
dimnames = list(labels(dist.obj),
"name")))
outputs$clusters$name <- labels(dist.obj)
# Square similarity matrix
#sim_square <- net_to_mat(similarity,
# weight = TRUE,
# squared = TRUE,
# symmetrical = TRUE)
sim_square <- as.matrix(dist.obj)
## 2.1. apclusterK ----------------------------------------------------------
if(!is.null(K)){
if(is.null(seed)){
outputs$algorithm <- apcluster::apclusterK(s = sim_square,
K = K,
prc = prc,
bimaxit = bimaxit,
exact = FALSE,
maxits = maxits,
convits = convits,
lam = lam,
includeSim = FALSE,
details = details,
nonoise = nonoise,
seed = NA)
}else{
outputs$algorithm <- apcluster::apclusterK(s = sim_square,
K = K,
prc = prc,
bimaxit = bimaxit,
exact = FALSE,
maxits = maxits,
convits = convits,
lam = lam,
includeSim = FALSE,
details = details,
nonoise = nonoise,
seed = seed)
}
}
## 2.2. apcluster -----------------------------------------------------------
else{
if(is.null(seed)){
outputs$algorithm <- apcluster::apcluster(s = sim_square,
p = p,
q = q,
maxits = maxits,
convits = convits,
lam = lam,
includeSim = FALSE,
details = details,
nonoise = nonoise,
seed = NA)
}else{
outputs$algorithm <- apcluster::apcluster(s = sim_square,
p = p,
q = q,
maxits = maxits,
convits = convits,
lam = lam,
includeSim = FALSE,
details = details,
nonoise = nonoise,
seed = seed)
}
}
# names(outputs$algorithm) <- paste0("K_", n_clust)
# Convert output of apcluster into a data.frame with bioregions per site
names(outputs$algorithm@clusters) <-
paste0("K_", 1:length(outputs$algorithm@clusters))
outputs$algorithm@clusters <- lapply(outputs$algorithm@clusters, names)
outputs_df <- mapply(cbind, outputs$algorithm@clusters,
"K_" = names(outputs$algorithm@clusters),
SIMPLIFY = FALSE)
outputs_df <- do.call(rbind, outputs_df)
colnames(outputs_df) <- c("Site",
paste0("K_", length(outputs$algorithm@clusters)))
outputs$clusters <- as.data.frame(outputs_df)
#data.frame(outputs$clusters,
# outputs_df)
outputs$clusters <- knbclu(outputs$clusters, reorder = TRUE)
outputs$cluster_info <- data.frame(
partition_name = colnames(outputs$clusters)[2],
n_clust = apply(outputs$clusters[, 2, drop = FALSE],
2, function(x) length(unique(x[!is.na(x)]))))
class(outputs) <- append("bioregion.clusters", class(outputs))
# Set algorithm in output
if (!algorithm_in_output) {
outputs$algorithm <- NA
}
return(outputs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.