Nothing
#' Non-hierarchical clustering: K-means analysis
#'
#' This function performs non-hierarchical clustering based on dissimilarity
#' using a k-means analysis.
#'
#' @param dissimilarity The output object from [dissimilarity()] or
#' [similarity_to_dissimilarity()], or a `dist` object. If a `data.frame` is
#' used, the first two columns should represent pairs of sites (or any pair of
#' nodes), and the subsequent column(s) should contain the dissimilarity indices.
#'
#' @param index The name or number of the dissimilarity column to use. By
#' default, the third column name of `dissimilarity` is used.
#'
#' @param seed A value for the random number generator (`NULL` for random by
#' default).
#'
#' @param n_clust An `integer` vector or a single `integer` value specifying
#' the requested number(s) of clusters.
#'
#' @param iter_max An `integer` specifying the maximum number of iterations for
#' the k-means method (see [kmeans][stats::kmeans]).
#'
#' @param nstart An `integer` specifying how many random sets of `n_clust`
#' should be selected as starting points for the k-means analysis
#' (see [kmeans][stats::kmeans]).
#'
#' @param algorithm A `character` specifying the algorithm to use for k-means
#' (see [kmeans][stats::kmeans]). Available options are Hartigan-Wong, Lloyd,
#' Forgy, and MacQueen.
#'
#' @param algorithm_in_output A `boolean` indicating whether the original
#' output of [kmeans][stats::kmeans] should be included in the output. Defaults
#' to `TRUE` (see Value).
#'
#' @return
#' A `list` of class `bioregion.clusters` with five components:
#' \enumerate{
#' \item{**name**: A `character` string containing the name of the algorithm.}
#' \item{**args**: A `list` of input arguments as provided by the user.}
#' \item{**inputs**: A `list` of characteristics of the clustering process.}
#' \item{**algorithm**: A `list` of all objects associated with the clustering
#' procedure, such as original cluster objects (only if
#' `algorithm_in_output = TRUE`).}
#' \item{**clusters**: A `data.frame` containing the clustering results.}}
#'
#' If `algorithm_in_output = TRUE`, the `algorithm` slot includes the output of
#' [kmeans][stats::kmeans].
#'
#' @details
#' This method partitions data into k groups such that the sum of squares of
#' Euclidean distances from points to the assigned cluster centers is minimized.
#' K-means cannot be applied directly to dissimilarity or beta-diversity metrics
#' because these distances are not Euclidean. Therefore, it first requires
#' transforming the dissimilarity matrix using Principal Coordinate Analysis
#' (PCoA) with [pcoa][ape::pcoa], and then applying k-means to the coordinates
#' of points in the PCoA.
#'
#' Because this additional transformation alters the initial dissimilarity
#' matrix, the partitioning around medoids method ([nhclu_pam]) is preferred.
#'
#' @seealso
#' For more details illustrated with a practical example,
#' see the vignette:
#' \url{https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html}.
#'
#' Associated functions:
#' [nhclu_clara] [nhclu_clarans] [nhclu_dbscan] [nhclu_pam] [nhclu_affprop]
#'
#' @author
#' Boris Leroy (\email{leroy.boris@gmail.com}) \cr
#' Pierre Denelle (\email{pierre.denelle@gmail.com}) \cr
#' Maxime Lenormand (\email{maxime.lenormand@inrae.fr})
#'
#' @examples
#' comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
#' 20, 25)
#' rownames(comat) <- paste0("Site",1:20)
#' colnames(comat) <- paste0("Species",1:25)
#'
#' comnet <- mat_to_net(comat)
#'
#' dissim <- dissimilarity(comat, metric = "all")
#'
#' clust <- nhclu_kmeans(dissim, n_clust = 2:10, index = "Simpson")
#'
#' @importFrom stats as.dist kmeans
#' @importFrom ape pcoa
#'
#' @export
nhclu_kmeans <- function(dissimilarity,
index = names(dissimilarity)[3],
seed = NULL,
n_clust = c(1,2,3),
iter_max = 10,
nstart = 10,
algorithm = "Hartigan-Wong",
algorithm_in_output = TRUE){
# 1. Controls ---------------------------------------------------------------
controls(args = NULL, data = dissimilarity, type = "input_nhandhclu")
if(!inherits(dissimilarity, "dist")){
controls(args = NULL, data = dissimilarity, type = "input_dissimilarity")
controls(args = NULL, data = dissimilarity,
type = "input_data_frame_nhandhclu")
controls(args = index, data = dissimilarity, type = "input_net_index")
net <- dissimilarity
# Convert tibble into dataframe
if(inherits(net, "tbl_df")){
net <- as.data.frame(net)
}
net[, 3] <- net[, index]
net <- net[, 1:3]
controls(args = NULL, data = net, type = "input_net_index_value")
dist.obj <- stats::as.dist(
net_to_mat(net,
weight = TRUE, squared = TRUE, symmetrical = TRUE))
} else {
controls(args = NULL, data = dissimilarity, type = "input_dist")
dist.obj <- dissimilarity
if(is.null(labels(dist.obj))){
attr(dist.obj, "Labels") <- paste0(1:attr(dist.obj, "Size"))
message("No labels detected, they have been assigned automatically.")
}
}
if(!is.null(seed)){
controls(args = seed, data = NULL, type = "strict_positive_integer")
}
controls(args = n_clust, data = NULL,
type = "strict_positive_integer_vector")
controls(args = iter_max, data = NULL, type = "positive_integer")
controls(args = nstart, data = NULL, type = "positive_integer")
controls(args = algorithm, data = NULL, type = "character")
if(!(algorithm %in% c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"))){
stop(paste0("Please choose algorithm from the following:\n",
"Hartigan-Wong, Lloyd, Forgy or MacQueen."),
call. = FALSE)
}
controls(args = algorithm_in_output, data = NULL, type = "boolean")
# 2. Function ---------------------------------------------------------------
outputs <- list(name = "nhclu_kmeans")
outputs$args <- list(index = index,
seed = seed,
n_clust = n_clust,
iter_max = iter_max,
nstart = nstart,
algorithm = algorithm,
algorithm_in_output = algorithm_in_output)
outputs$inputs <- list(bipartite = FALSE,
weight = TRUE,
pairwise = TRUE,
pairwise_metric = ifelse(!inherits(dissimilarity,
"dist"),
ifelse(is.numeric(index),
names(net)[3], index),
NA),
dissimilarity = TRUE,
nb_sites = attr(dist.obj, "Size"),
hierarchical = FALSE)
outputs$algorithm <- list()
outputs$clusters <- data.frame(matrix(ncol = 1,
nrow = length(labels(dist.obj)),
dimnames = list(labels(dist.obj),
"name")))
outputs$clusters$name <- labels(dist.obj)
# kmeans only works on Euclidean distances, so the dissimilarity matrix needs
# to be transformed into a multivariate space with euclidean distances
# with a Principal Coordinate Analysis
if(length(unique(as.numeric(dist.obj))) == 1 &&
unique(as.numeric(dist.obj)) == 0){
stop("All sites are completely similar.")
} else{
if(length(unique(as.numeric(dist.obj))) == 1 &&
unique(as.numeric(dist.obj)) == 1){
warning("All sites are completely dissimilar.")
}
outputs$clustering_algorithms$pcoa <- ape::pcoa(dist.obj)
}
# Performing the kmeans on the PCoA with all axes
if(is.null(seed)){
outputs$algorithm <- lapply(n_clust,
function(x)
stats::kmeans(dist.obj,
centers = x,
iter.max = iter_max,
nstart = nstart,
algorithm = algorithm))
}else{
set.seed(seed)
outputs$algorithm <- lapply(n_clust,
function(x)
stats::kmeans(dist.obj,
centers = x,
iter.max = iter_max,
nstart = nstart,
algorithm = algorithm))
rm(.Random.seed, envir=globalenv())
}
names(outputs$algorithm) <- paste0("K_", n_clust)
outputs$clusters <- data.frame(
outputs$clusters,
data.frame(lapply(names(outputs$algorithm),
function(x) outputs$algorithm[[x]]$cluster)))
outputs$clusters <- knbclu(outputs$clusters, reorder = TRUE)
outputs$cluster_info <- data.frame(
partition_name = names(outputs$clusters)[2:length(outputs$clusters),
drop = FALSE],
n_clust = apply(outputs$clusters[, 2:length(outputs$clusters),
drop = FALSE],
2, function(x) length(unique(x))))
# Set algorithm in output
if (!algorithm_in_output) {
outputs$algorithm <- NA
}
class(outputs) <- append("bioregion.clusters", class(outputs))
return(outputs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.