Nothing
getRefs <- function(x){
citation <- switch(
x,
"none" = "",
"EBICglasso" = c("Friedman, J. H., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9 (3), 432-441.",
"Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. ",
"Friedman, J. H., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso estimation of gaussian graphical models. Retrieved from https://CRAN.R-project.org/package=glasso",
"Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48 (1), 1-18."
),
"glasso" = c("Friedman, J. H., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9 (3), 432-441.",
"Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. , 23 , 2020-2028.",
"Friedman, J. H., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso estimation of gaussian graphical models. Retrieved from https://CRAN.R-project.org/package=glasso",
"Epskamp, S., Cramer, A., Waldorp, L., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48 (1), 1-18."
),
"IsingFit" = "van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific reports, 4 (5918), 1-10.",
"IsingSampler" = c("Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (in press). Network psychometrics. In P. Irwing, D. Hughes, & T. Booth (Eds.), Handbook of psychometrics. New York, NY, USA: Wiley.",
"Epskamp, S. (2014). IsingSampler: Sampling methods and distribution functions for the Ising model. Retrieved from github.com/SachaEpskamp/IsingSampler"),
"huge" = "Zhao, T., Li, X., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2015). huge: High-dimensional undirected graph estimation. Retrieved from https://CRAN.R-project.org/package=huge",
"adalasso" = "Kraeamer, N., Schaeafer, J., & Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene association networks using graphical gaussian models. BMC Bioinformatics, 10 (1), 1-24.",
"mgm" = "Jonas M. B. Haslbeck, Lourens J. Waldorp (2016). mgm: Structure Estimation for Time-Varying Mixed Graphical Models in high-dimensional Data arXiv preprint:1510.06871v2 URL http://arxiv.org/abs/1510.06871v2.",
"TMFG" = c("Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network Structure of the Wisconsin Schizotypy Scales-Short Forms: Examining Psychometric Network Filtering Approaches. Behavorial Research Methods. DOI: 10.3758/s13428-018-1032-9",
"Christensen, A. P. (2018). NetworkToolbox: Methods and Measures for Brain, Cognitive, and Psychometric Network Analysis in R"),
"LoGo" = c("Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94(6), 062306.",
"Christensen, A. P. (2018). NetworkToolbox: Methods and Measures for Brain, Cognitive, and Psychometric Network Analysis in R"),
"ggmModSelect" = c("Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models.",
"http://psychosystems.org/qgraph_1.5"),
"graphicalVAR" = c("Abegaz, F., & Wit, E. (2013). Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics, 14(3), 586???599.",
"Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian Graphical Model in Cross-sectional and Time-series Data. Multivariate Behavioral Research",
"Rothman, A. J., Levina, E., & Zhu, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19(4), 947???962.",
"Wild, B., Eichler, M., Friederich, H.-C., Hartmann, M., Zipfel, S., & Herzog, W. (2010). A graphical vector autoregressive modeling approach to the analysis of electronic diary data. BMC Medical Research Methodology, 10(1), 28. doi: 10.1186/1471-2288-10-28."
),
"GGMncv" = c(
"Williams, D. (2020). Beyond Lasso: A Survey of Nonconvex Regularization in Gaussian Graphical Models. PsyArXiv pre-print. https://doi.org/10.31234/osf.io/ad57p"
)
)
citation <- c(citation,"Epskamp, S., Borsboom, D., & Fried, E. I. (2016). Estimating psychological networks and their accuracy: a tutorial paper. arXiv preprint, arXiv:1604.08462.")
citation
}
print.bootnet <- function(x, ...){
if (is.list(x$sample$graph)){
cat("=== bootnet Results (multiple graphs)===")
print(x$sample)
cat("\n")
cat("\nNumber of bootstrapped networks:",length(x[['boots']]),
paste0("\nResults of original samples stored in ",name,"$sample"),
paste0("\nTable of all statistics from original samples stored in ",name,"$sampleTable"),
paste0("\nResults of bootstraps stored in ",name,"$boots"),
paste0("\nTable of all statistics from bootstraps stored in ",name,"$bootTable"),
"\n",
paste0("\nUse plot(",name,"$sample, graph = '...') to plot estimated network of original sample"),
paste0("\nUse summary(",name,", graph = '...') to inspect summarized statistics (see ?summary.bootnet for details)"),
paste0("\nUse plot(",name,", graph = '...') to plot summarized statistics (see ?plot.bootnet for details)"),
"\n\nRelevant references:\n\n",paste0("\t",getRefs(x$sample$default),collapse="\n")
)
} else {
directed <- x$sample$directed
if (directed){
ind <- matrix(TRUE,ncol(x$sample$graph),ncol(x$sample$graph))
} else {
ind <- upper.tri(x$sample$graph,diag=FALSE)
}
name <- deparse(substitute(x))[[1]]
if (nchar(name) > 10) name <- "object"
cat("=== bootnet Results ===")
cat("\nNumber of nodes:",nrow(x$sample[['graph']]),
"\nNumber of non-zero edges in sample:",sum(x$sample[['graph']][ind]!=0),"/",sum(ind),
"\nMean weight of sample:",mean(x$sample[['graph']][ind]) ,
"\nNumber of bootstrapped networks:",length(x[['boots']]),
paste0("\nResults of original sample stored in ",name,"$sample"),
paste0("\nTable of all statistics from original sample stored in ",name,"$sampleTable"),
paste0("\nResults of bootstraps stored in ",name,"$boots"),
paste0("\nTable of all statistics from bootstraps stored in ",name,"$bootTable"),
"\n",
paste0("\nUse plot(",name,"$sample) to plot estimated network of original sample"),
paste0("\nUse summary(",name,") to inspect summarized statistics (see ?summary.bootnet for details)"),
paste0("\nUse plot(",name,") to plot summarized statistics (see ?plot.bootnet for details)"),
"\n\nRelevant references:\n\n",paste0("\t",getRefs(x$sample$default),collapse="\n")
)
}
}
print.bootnetResult <- function(x, ...){
name <- deparse(substitute(x))[[1]]
if (nchar(name) > 10) name <- "object"
# Trick for printing multiple networks:
if (is.list(x$graph)){
cat(paste0("\n=== Estimated networks ==="))
cat(paste0("\nDefault set used: ",x$default),
"\n",
paste0("\nUse bootnet(",name,") to bootstrap edge weights and centrality indices"),
"\n\nRelevant references:\n\n",paste0("\t",getRefs(x$default),collapse="\n"))
for (i in 1:length(x$graph)){
if (x$directed[[i]]){
ind <- matrix(TRUE,ncol(x$graph[[i]]),ncol(x$graph[[i]]))
} else {
ind <- upper.tri(x$graph[[i]],diag=FALSE)
}
cat(paste0("\n\n=== ",names(x$graph)[[i]]," ==="))
cat("\nNumber of nodes:",nrow(x[['graph']][[i]]),
"\nNumber of non-zero edges:",sum(x[['graph']][[i]][ind]!=0),"/",sum(ind),
"\nMean weight:",mean(x[['graph']][[i]][ind]) ,
paste0("\nNetwork stored in ",name,"$graph$",names(x$graph)[[i]]),
paste0("\nUse plot(",name,", graph = '",names(x$graph)[[i]],"') to plot estimated network")
)
}
} else {
directed <- x$directed
if (directed){
ind <- matrix(TRUE,ncol(x$graph),ncol(x$graph))
} else {
ind <- upper.tri(x$graph,diag=FALSE)
}
name <- deparse(substitute(x))[[1]]
if (nchar(name) > 10) name <- "object"
cat(paste0("\n=== Estimated network ==="))
if (isTRUE(x$thresholded)){
cat("\nNote: network has been thresholded using 'bootThreshold'")
}
cat("\nNumber of nodes:",nrow(x[['graph']]),
"\nNumber of non-zero edges:",sum(x[['graph']][ind]!=0),"/",sum(ind),
"\nMean weight:",mean(x[['graph']][ind]) ,
paste0("\nNetwork stored in ",name,"$graph"),
"\n",
paste0("\nDefault set used: ",x$default),
"\n",
paste0("\nUse plot(",name,") to plot estimated network"),
paste0("\nUse bootnet(",name,") to bootstrap edge weights and centrality indices"),
"\n\nRelevant references:\n\n",paste0("\t",getRefs(x$default),collapse="\n")
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.