Nothing
#' @title Cell-means-like time-averaged archetype
#' @export
#' @family informative prior archetypes
#' @description Create a cell-means-like informative prior archetype
#' with a special fixed effect to represent the average across time.
#' @details This archetype has a special fixed effect for each treatment group
#' to represent the mean response averaged across all the time points.
#'
#' To illustrate, suppose the dataset has two treatment groups A and B,
#' time points 1, 2, and 3, and no other covariates.
#'
#' Let `mu_gt` be the marginal mean of the response at group
#' `g` time `t` given data and hyperparameters.
#' The model has fixed effect parameters `beta_1`, `beta_2`, ..., `beta_6`
#' which express the marginal means `mu_gt` as follows:
#'
#' `mu_A1 = 3 * beta_1 - beta_2 - beta_3`
#' `mu_A2 = beta_2`
#' `mu_A3 = beta_3`
#'
#' `mu_B1 = 3 * beta_4 - beta_5 - beta_6`
#' `mu_B2 = beta_5`
#' `mu_B3 = beta_6`
#'
#' For group A, `beta_1` is the average response in group A
#' averaged across time points. You can confirm this yourself
#' by expressing the average across time
#' `(mu_A1 + mu_A2 + mu_A3) / 3` in terms of the `beta_*` parameters
#' and confirming that the expression simplifies down to just `beta_1`.
#' `beta_2` represents the mean response in group A at time 2, and
#' `beta_3` represents the mean response in group A at time 3.
#' `beta_4`, `beta_5`, and `beta_6` are analogous for group B.
#' @inheritSection brm_archetype_successive_cells Nuisance variables
#' @inheritSection brm_prior_archetype Prior labeling
#' @section Prior labeling for [brm_archetype_average_cells()]:
#' Within each treatment group, the initial time point represents
#' the average, and each successive time point represents the response
#' within that actual time.
#' To illustrate, consider the example in the Details section.
#' In the labeling scheme for [brm_archetype_average_cells()],
#' you can label the prior on `beta_1` using
#' `brm_prior_label(code = "normal(1.2, 5)", group = "A", time = "1")`.
#' Similarly, you cal label the prior on `beta_5` with
#' `brm_prior_label(code = "normal(1.3, 7)", group = "B", time = "2")`.
#' To confirm that you set the prior correctly, compare the `brms` prior
#' with the output of `summary(your_archetype)`.
#' See the examples for details.
#' @return A special classed `tibble` with data tailored to
#' the cell-means-like time-averaged archetype. The dataset is augmented
#' with extra columns with the `"archetype_"` prefix, as well as special
#' attributes to tell downstream functions like [brm_formula()] what to
#' do with the object.
#' @inheritParams brm_formula
#' @inheritParams brm_model
#' @inheritParams brm_archetype_successive_cells
#' @examples
#' set.seed(0L)
#' data <- brm_simulate_outline(
#' n_group = 2,
#' n_patient = 100,
#' n_time = 4,
#' rate_dropout = 0,
#' rate_lapse = 0
#' ) |>
#' dplyr::mutate(response = rnorm(n = dplyr::n())) |>
#' brm_data_change() |>
#' brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
#' brm_simulate_categorical(
#' names = c("status1", "status2"),
#' levels = c("present", "absent")
#' )
#' dplyr::select(
#' data,
#' group,
#' time,
#' patient,
#' starts_with("biomarker"),
#' starts_with("status")
#' )
#' archetype <- brm_archetype_average_cells(data)
#' archetype
#' summary(archetype)
#' formula <- brm_formula(archetype)
#' formula
#' prior <- brm_prior_label(
#' code = "normal(1, 2.2)",
#' group = "group_1",
#' time = "time_2"
#' ) |>
#' brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3") |>
#' brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4") |>
#' brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2") |>
#' brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3") |>
#' brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
#' brm_prior_archetype(archetype)
#' prior
#' class(prior)
#' if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
#' tmp <- utils::capture.output(
#' suppressMessages(
#' suppressWarnings(
#' model <- brm_model(
#' data = archetype,
#' formula = formula,
#' prior = prior,
#' chains = 1,
#' iter = 100,
#' refresh = 0
#' )
#' )
#' )
#' )
#' suppressWarnings(print(model))
#' brms::prior_summary(model)
#' draws <- brm_marginal_draws(
#' data = archetype,
#' formula = formula,
#' model = model
#' )
#' summaries_model <- brm_marginal_summaries(draws)
#' summaries_data <- brm_marginal_data(data)
#' brm_plot_compare(model = summaries_model, data = summaries_data)
#' }
brm_archetype_average_cells <- function(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),
baseline_subgroup = !is.null(attr(data, "brm_baseline")) &&
!is.null(attr(data, "brm_subgroup")),
baseline_subgroup_time = !is.null(attr(data, "brm_baseline")) &&
!is.null(attr(data, "brm_subgroup")),
baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
) {
brm_data_validate.default(data)
data <- brm_data_remove_archetype(data)
data <- brm_data_fill(data)
brm_archetype_assert_prefixes(
prefix_interest = prefix_interest,
prefix_nuisance = prefix_nuisance
)
archetype <- if_any(
brm_data_has_subgroup(data),
archetype_average_cells_subgroup(data, prefix_interest),
archetype_average_cells(data, prefix_interest)
)
brm_archetype_init(
data = data,
interest = archetype$interest,
mapping = archetype$mapping,
intercept = intercept,
baseline = baseline,
baseline_subgroup = baseline_subgroup,
baseline_subgroup_time = baseline_subgroup_time,
baseline_time = baseline_time,
covariates = covariates,
prefix_nuisance = prefix_nuisance,
subclass = "brms_mmrm_average_cells"
)
}
archetype_average_cells <- function(data, prefix) {
group <- attr(data, "brm_group")
time <- attr(data, "brm_time")
levels_group <- brm_levels(data[[attr(data, "brm_group")]])
levels_time <- brm_levels(data[[attr(data, "brm_time")]])
n_time <- length(levels_time)
matrix <- NULL
for (name_group in levels_group) {
for (name_time in levels_time) {
if (name_time == levels_time[1L]) {
cell <- (data[[group]] == name_group) & (data[[time]] == name_time)
matrix <- cbind(matrix, n_time * as.integer(cell))
} else {
plus <- (data[[group]] == name_group) & (data[[time]] == name_time)
minus <- (data[[group]] == name_group) &
(data[[time]] == levels_time[1L])
matrix <- cbind(matrix, as.integer(plus) - as.integer(minus))
}
}
}
names_group <- rep(levels_group, each = n_time)
names_time <- rep(levels_time, times = length(levels_group))
names <- paste0(prefix, paste(names_group, names_time, sep = "_"))
colnames(matrix) <- names
interest <- tibble::as_tibble(as.data.frame(matrix))
mapping <- tibble::tibble(
group = names_group,
time = names_time,
variable = names
)
list(interest = interest, mapping = mapping)
}
archetype_average_cells_subgroup <- function(data, prefix) {
group <- attr(data, "brm_group")
subgroup <- attr(data, "brm_subgroup")
time <- attr(data, "brm_time")
levels_group <- brm_levels(data[[group]])
levels_subgroup <- brm_levels(data[[subgroup]])
levels_time <- brm_levels(data[[time]])
n_group <- length(levels_group)
n_subgroup <- length(levels_subgroup)
n_time <- length(levels_time)
matrix <- NULL
for (name_group in levels_group) {
for (name_subgroup in levels_subgroup) {
for (name_time in levels_time) {
if (name_time == levels_time[1L]) {
cell <- (data[[group]] == name_group) &
(data[[subgroup]] == name_subgroup) &
(data[[time]] == name_time)
matrix <- cbind(matrix, n_time * as.integer(cell))
} else {
plus <- (data[[group]] == name_group) &
(data[[subgroup]] == name_subgroup) &
(data[[time]] == name_time)
minus <- (data[[group]] == name_group) &
(data[[subgroup]] == name_subgroup) &
(data[[time]] == levels_time[1L])
matrix <- cbind(matrix, as.integer(plus) - as.integer(minus))
}
}
}
}
names_group <- rep(levels_group, each = n_time * n_subgroup)
names_subgroup <- rep(rep(levels_subgroup, times = n_group), each = n_time)
names_time <- rep(levels_time, times = n_group * n_subgroup)
names <- paste0(
prefix,
paste(names_group, names_subgroup, names_time, sep = "_")
)
colnames(matrix) <- names
interest <- tibble::as_tibble(as.data.frame(matrix))
mapping <- tibble::tibble(
group = names_group,
subgroup = names_subgroup,
time = names_time,
variable = names
)
list(interest = interest, mapping = mapping)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.