Nothing
#' @title Cell-means-like successive differences archetype
#' @export
#' @family informative prior archetypes
#' @description Create an informative prior archetype where the fixed effects
#' are successive differences between adjacent time points.
#' @details In this archetype, each fixed effect is either an intercept
#' on the first time point or the difference between two adjacent time
#' points, and each treatment group has its own set of fixed effects
#' independent of the other treatment groups.
#'
#' To illustrate, suppose the dataset has two treatment groups A and B,
#' time points 1, 2, and 3, and no other covariates.
#' Let `mu_gt` be the marginal mean of the response at group
#' `g` time `t` given data and hyperparameters.
#' The model has fixed effect parameters `beta_1`, `beta_2`, ..., `beta_6`
#' which express the marginal means `mu_gt` as follows:
#'
#' `mu_A1 = beta_1`
#' `mu_A2 = beta_1 + beta_2`
#' `mu_A3 = beta_1 + beta_2 + beta_3`
#'
#' `mu_B1 = beta_4`
#' `mu_B2 = beta_4 + beta_5`
#' `mu_B3 = beta_4 + beta_5 + beta_6`
#'
#' For group A, `beta_1` is the time 1 intercept, `beta_2` represents
#' time 2 minus time 1, and `beta_3` represents time 3 minus time 2.
#' `beta_4`, `beta_5`, and `beta_6` behave analogously for group B.
#' @section Nuisance variables:
#' In the presence of covariate adjustment, functions like
#' [brm_archetype_successive_cells()] convert nuisance factors into binary
#' dummy variables, then center all those dummy variables and any
#' continuous nuisance variables at their means in the data.
#' This ensures that the main model coefficients
#' of interest are not implicitly conditional on a subset of the data.
#' In other words, preprocessing nuisance variables this way preserves
#' the interpretations of the fixed effects of interest, and it ensures
#' informative priors can be specified correctly.
#' @inheritSection brm_prior_archetype Prior labeling
#' @section Prior labeling for [brm_archetype_successive_cells()]:
#' Within each treatment group, each intercept is labeled by the earliest
#' time point, and each successive difference term gets the successive
#' time point as the label.
#' To illustrate, consider the example in the Details section.
#' In the labeling scheme for [brm_archetype_successive_cells()],
#' you can label the prior on `beta_1` using
#' `brm_prior_label(code = "normal(1.2, 5)", group = "A", time = "1")`.
#' Similarly, you cal label the prior on `beta_5` with
#' `brm_prior_label(code = "normal(1.3, 7)", group = "B", time = "2")`.
#' To confirm that you set the prior correctly, compare the `brms` prior
#' with the output of `summary(your_archetype)`.
#' See the examples for details.
#' @return A special classed `tibble` with data tailored to
#' the successive differences archetype. The dataset is augmented with
#' extra columns with the `"archetype_"` prefix, as well as special
#' attributes to tell downstream functions like [brm_formula()] what to
#' do with the object.
#' @inheritParams brm_formula
#' @inheritParams brm_model
#' @param prefix_interest Character string to prepend to the new columns
#' of generated fixed effects of interest (relating to group, subgroup,
#' and/or time).
#' In rare cases, you may need to set a non-default prefix to prevent
#' name conflicts with existing columns in the data, or rename
#' the columns in your data.
#' `prefix_interest` must not be the same value as `prefix_nuisance`.
#' @param prefix_nuisance Same as `prefix_interest`, but relating to
#' generated fixed effects NOT of interest (not relating to group,
#' subgroup, or time). Must not be the same value as `prefix_interest`.
#' @param intercept `TRUE` to make one of the parameters an intercept,
#' `FALSE` otherwise. If `TRUE`, then the interpretation of the
#' parameters in the "Details" section will change, and you are
#' responsible for manually calling `summary()` on the archetype
#' and interpreting the parameters according to the output.
#' In addition, you are responsible for setting an
#' appropriate prior on the intercept. In normal usage, `brms` looks for
#' a model parameter called `"Intercept"` and uses the data to set the prior
#' to help the MCMC runs smoothly. If `intercept = TRUE` for informative
#' prior archetypes, the intercept will be called something else, and
#' `brms` cannot auto-generate a sensible default prior.
#' @param clda `TRUE` to opt into constrained longitudinal data analysis
#' (cLDA), `FALSE` otherwise. To use cLDA, `reference_time` must have been
#' non-`NULL` in the call to [brm_data()] used to construct the data.
#'
#' Some archetypes cannot support cLDA
#' (e.g. [brm_archetype_average_cells()] and
#' [brm_archetype_average_effects()]).
#'
#' In cLDA, the fixed effects parameterization
#' is restricted such that all treatment groups are pooled at baseline.
#' (If you supplied a `subgroup` variable in [brm_data()], then
#' this constraint is applied separately within each subgroup variable.)
#' cLDA may result in more precise estimates when the `time` variable
#' has a baseline level and the baseline outcomes are recorded
#' before randomization in a clinical trial.
#' @examples
#' set.seed(0L)
#' data <- brm_simulate_outline(
#' n_group = 2,
#' n_patient = 100,
#' n_time = 4,
#' rate_dropout = 0,
#' rate_lapse = 0
#' ) |>
#' dplyr::mutate(response = rnorm(n = dplyr::n())) |>
#' brm_data_change() |>
#' brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
#' brm_simulate_categorical(
#' names = c("status1", "status2"),
#' levels = c("present", "absent")
#' )
#' dplyr::select(
#' data,
#' group,
#' time,
#' patient,
#' starts_with("biomarker"),
#' starts_with("status")
#' )
#' archetype <- brm_archetype_successive_cells(data)
#' archetype
#' summary(archetype)
#' formula <- brm_formula(archetype)
#' formula
#' prior <- brm_prior_label(
#' code = "normal(1, 2.2)",
#' group = "group_1",
#' time = "time_2"
#' ) |>
#' brm_prior_label("normal(1, 3.3)", group = "group_1", time = "time_3") |>
#' brm_prior_label("normal(1, 4.4)", group = "group_1", time = "time_4") |>
#' brm_prior_label("normal(2, 2.2)", group = "group_2", time = "time_2") |>
#' brm_prior_label("normal(2, 3.3)", group = "group_2", time = "time_3") |>
#' brm_prior_label("normal(2, 4.4)", group = "group_2", time = "time_4") |>
#' brm_prior_archetype(archetype)
#' prior
#' class(prior)
#' if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
#' tmp <- utils::capture.output(
#' suppressMessages(
#' suppressWarnings(
#' model <- brm_model(
#' data = archetype,
#' formula = formula,
#' prior = prior,
#' chains = 1,
#' iter = 100,
#' refresh = 0
#' )
#' )
#' )
#' )
#' suppressWarnings(print(model))
#' brms::prior_summary(model)
#' draws <- brm_marginal_draws(
#' data = archetype,
#' formula = formula,
#' model = model
#' )
#' summaries_model <- brm_marginal_summaries(draws)
#' summaries_data <- brm_marginal_data(data)
#' brm_plot_compare(model = summaries_model, data = summaries_data)
#' }
brm_archetype_successive_cells <- function(
data,
intercept = FALSE,
baseline = !is.null(attr(data, "brm_baseline")),
baseline_subgroup = !is.null(attr(data, "brm_baseline")) &&
!is.null(attr(data, "brm_subgroup")),
baseline_subgroup_time = !is.null(attr(data, "brm_baseline")) &&
!is.null(attr(data, "brm_subgroup")),
baseline_time = !is.null(attr(data, "brm_baseline")),
covariates = TRUE,
clda = FALSE,
prefix_interest = "x_",
prefix_nuisance = "nuisance_"
) {
brm_data_validate.default(data)
data <- brm_data_remove_archetype(data)
data <- brm_data_fill(data)
brm_archetype_assert_prefixes(
prefix_interest = prefix_interest,
prefix_nuisance = prefix_nuisance
)
archetype <- if_any(
brm_data_has_subgroup(data),
archetype_successive_cells_subgroup(data, clda, prefix_interest),
archetype_successive_cells(data, clda, prefix_interest)
)
brm_archetype_init(
data = data,
interest = archetype$interest,
mapping = archetype$mapping,
intercept = intercept,
baseline = baseline,
baseline_subgroup = baseline_subgroup,
baseline_subgroup_time = baseline_subgroup_time,
baseline_time = baseline_time,
covariates = covariates,
prefix_nuisance = prefix_nuisance,
subclass = "brms_mmrm_successive_cells"
)
}
archetype_successive_cells <- function(data, clda, prefix) {
group <- attr(data, "brm_group")
time <- attr(data, "brm_time")
reference_group <- attr(data, "brm_reference_group")
reference_time <- attr(data, "brm_reference_time")
levels_group <- brm_levels(data[[group]])
levels_time <- brm_levels(data[[time]])
n_time <- length(levels_time)
data_first <- data[data[[time]] == levels_time[1L], ]
matrix_group <- NULL
for (name in levels_group) {
matrix_group <- cbind(
matrix_group,
as.integer(data_first[[group]] == name)
)
}
matrix_time <- diag(n_time) + lower.tri(diag(n_time))
matrix <- kronecker(X = matrix_group, Y = matrix_time)
names_group <- rep(levels_group, each = n_time)
names_time <- rep(levels_time, times = length(levels_group))
names <- paste0(prefix, paste(names_group, names_time, sep = "_"))
colnames(matrix) <- names
interest <- tibble::as_tibble(as.data.frame(matrix))
mapping <- tibble::tibble(
group = names_group,
time = names_time,
variable = names
)
if (clda) {
index_keep <- mapping$group == reference_group &
mapping$time == reference_time
keep <- mapping$variable[index_keep]
for (name_group in setdiff(levels_group, reference_group)) {
index_drop <- mapping$group == name_group &
mapping$time == reference_time
drop <- mapping$variable[index_drop]
interest[[keep]] <- as.integer(interest[[keep]] | interest[[drop]])
interest[[drop]] <- NULL
mapping <- mapping[mapping$variable != drop,, drop = FALSE] # nolint
}
}
list(interest = interest, mapping = mapping)
}
archetype_successive_cells_subgroup <- function(data, clda, prefix) {
group <- attr(data, "brm_group")
subgroup <- attr(data, "brm_subgroup")
time <- attr(data, "brm_time")
reference_group <- attr(data, "brm_reference_group")
reference_time <- attr(data, "brm_reference_time")
levels_group <- brm_levels(data[[group]])
levels_subgroup <- brm_levels(data[[subgroup]])
levels_time <- brm_levels(data[[time]])
n_group <- length(levels_group)
n_subgroup <- length(levels_subgroup)
n_time <- length(levels_time)
data_first <- data[data[[time]] == data[[time]][1L], ]
matrix_group <- NULL
for (name_group in levels_group) {
for (name_subgroup in levels_subgroup) {
in_group_subgroup <- (data_first[[group]] == name_group) &
(data_first[[subgroup]] == name_subgroup)
matrix_group <- cbind(matrix_group, as.integer(in_group_subgroup))
}
}
matrix_time <- diag(n_time) + lower.tri(diag(n_time))
matrix <- kronecker(X = matrix_group, Y = matrix_time)
names_group <- rep(levels_group, each = n_time * n_subgroup)
names_subgroup <- rep(rep(levels_subgroup, times = n_group), each = n_time)
names_time <- rep(levels_time, times = n_group * n_subgroup)
names <- paste0(
prefix,
paste(names_group, names_subgroup, names_time, sep = "_")
)
colnames(matrix) <- names
interest <- tibble::as_tibble(as.data.frame(matrix))
mapping <- tibble::tibble(
group = names_group,
subgroup = names_subgroup,
time = names_time,
variable = names
)
if (clda) {
for (name_subgroup in levels_subgroup) {
index_keep <- mapping$group == reference_group &
mapping$subgroup == name_subgroup &
mapping$time == reference_time
keep <- mapping$variable[index_keep]
for (name_group in setdiff(levels_group, reference_group)) {
index_drop <- mapping$group == name_group &
mapping$subgroup == name_subgroup &
mapping$time == reference_time
drop <- mapping$variable[index_drop]
interest[[keep]] <- as.integer(interest[[keep]] | interest[[drop]])
interest[[drop]] <- NULL
mapping <- mapping[mapping$variable != drop,, drop = FALSE] # nolint
}
}
}
list(interest = interest, mapping = mapping)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.