Nothing
test_that("unname_df()", {
x <- unname_df(tibble::tibble(x = c(a = 1, b = 2), y = c(c = 3, d = 4)))
expect_null(names(x$x))
expect_null(names(x$y))
})
test_that("zero_pad_integers", {
expect_equal(
zero_pad_integers(c(1L, 0L, 2L, 5L, 7L)),
c("1", "0", "2", "5", "7")
)
expect_equal(
zero_pad_integers(c(1L, 10L, 0L, 2L, 5L, 7L)),
c("01", "10", "00", "02", "05", "07")
)
expect_equal(
zero_pad_integers(c(1L, 10L, 0L, 207L, 2L, 5L, 7L)),
c("001", "010", "000", "207", "002", "005", "007")
)
})
test_that("brm_has_subgroup() on regular data", {
data <- brm_data(
data = tibble::tibble(
CHG = c(1, 2),
TIME = c("x", "y"),
BASELINE = c(2, 3),
GROUP = c("x", "y"),
USUBJID = c("x", "y"),
SUBGROUP = c("x", "y")
),
outcome = "CHG",
group = "GROUP",
subgroup = "SUBGROUP",
time = "TIME",
baseline = "BASELINE",
patient = "USUBJID",
reference_group = "x",
reference_subgroup = "x"
)
template <- list(
data = data,
intercept = FALSE,
baseline = FALSE,
baseline_subgroup = FALSE,
baseline_subgroup_time = FALSE,
baseline_time = FALSE,
group = FALSE,
group_subgroup = FALSE,
group_subgroup_time = FALSE,
group_time = FALSE,
subgroup = FALSE,
subgroup_time = FALSE,
time = FALSE,
check_rank = FALSE
)
with_subgroup <- c(
"baseline_subgroup",
"baseline_subgroup_time",
"group_subgroup",
"group_subgroup_time",
"subgroup",
"subgroup_time"
)
for (term in setdiff(names(template), c("data", "check_rank"))) {
args <- template
args[[term]] <- TRUE
formula <- do.call(what = brm_formula, args = args)
expect_equal(
brm_has_subgroup(data = data, formula = formula),
term %in% with_subgroup
)
}
})
test_that("brm_has_subgroup() on archetype", {
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
archetype <- brm_archetype_successive_cells(data)
formula <- brm_formula(archetype)
expect_false(brm_has_subgroup(archetype, formula))
data <- brm_simulate_outline(
n_group = 2,
n_subgroup = 3,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
archetype <- brm_archetype_successive_cells(data)
formula <- brm_formula(archetype)
expect_true(brm_has_subgroup(archetype, formula))
})
test_that("brm_has_nuisance() on regular data", {
data <- brm_data(
data = tibble::tibble(
CHG = c(1, 2),
TIME = c("x", "y"),
BASELINE = c(2, 3),
GROUP = c("x", "y"),
USUBJID = c("x", "y"),
SUBGROUP = c("x", "y"),
FACTOR = c("x", "y")
),
outcome = "CHG",
group = "GROUP",
subgroup = "SUBGROUP",
time = "TIME",
baseline = "BASELINE",
patient = "USUBJID",
reference_group = "x",
reference_subgroup = "x",
covariates = "FACTOR"
)
template <- list(
data = data,
intercept = FALSE,
baseline = FALSE,
baseline_subgroup = FALSE,
baseline_subgroup_time = FALSE,
baseline_time = FALSE,
covariates = FALSE,
group = FALSE,
group_subgroup = FALSE,
group_subgroup_time = FALSE,
group_time = FALSE,
subgroup = FALSE,
subgroup_time = FALSE,
time = FALSE,
check_rank = FALSE
)
with_nuisance <- c(
"baseline",
"baseline_subgroup",
"baseline_subgroup_time",
"baseline_time",
"covariates"
)
for (term in setdiff(names(template), c("data", "check_rank"))) {
args <- template
args[[term]] <- TRUE
formula <- do.call(what = brm_formula, args = args)
expect_equal(
brm_has_nuisance(data = data, formula = formula),
term %in% with_nuisance
)
}
})
test_that("brm_has_nuisance() on archetype", {
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n()))
archetype <- brm_archetype_successive_cells(data)
formula <- brm_formula(archetype)
expect_false(brm_has_nuisance(archetype, formula))
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
archetype <- brm_archetype_successive_cells(data)
formula <- brm_formula(archetype)
expect_true(brm_has_nuisance(archetype, formula))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.