View source: R/loo_moment_match.R
loo_moment_match.brmsfit | R Documentation |
Moment matching for efficient approximate leave-one-out cross-validation
(LOO-CV). See loo_moment_match
for more details.
## S3 method for class 'brmsfit'
loo_moment_match(
x,
loo = NULL,
k_threshold = 0.7,
newdata = NULL,
resp = NULL,
check = TRUE,
recompile = FALSE,
...
)
## S3 method for class 'loo'
loo_moment_match(x, fit, ...)
x |
An R object of class |
loo |
An R object of class |
k_threshold |
The Pareto |
newdata |
An optional data.frame for which to evaluate predictions. If
|
resp |
Optional names of response variables. If specified, predictions are performed only for the specified response variables. |
check |
Logical; If |
recompile |
Logical, indicating whether the Stan model should be recompiled. This may be necessary if you are running moment matching on another machine than the one used to fit the model. No recompilation is done by default. |
... |
Further arguments passed to the underlying methods.
Additional arguments initially passed to |
fit |
An R object of class |
The moment matching algorithm requires draws of all variables
defined in Stan's parameters
block to be saved. Otherwise
loo_moment_match
cannot be computed. Thus, please set
save_pars = save_pars(all = TRUE)
in the call to brm
,
if you are planning to apply loo_moment_match
to your models.
An updated object of class loo
.
Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly Adaptive Importance Sampling. Statistics and Computing.
## Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
save_pars = save_pars(all = TRUE))
# throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
# no more warnings after moment matching
(mmloo1 <- loo_moment_match(fit1, loo = loo1))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.