| loo_predict.brmsfit | R Documentation | 
These functions are wrappers around the E_loo
function of the loo package.
## S3 method for class 'brmsfit'
loo_predict(
  object,
  type = c("mean", "var", "quantile"),
  probs = 0.5,
  psis_object = NULL,
  resp = NULL,
  ...
)
## S3 method for class 'brmsfit'
loo_epred(
  object,
  type = c("mean", "var", "quantile"),
  probs = 0.5,
  psis_object = NULL,
  resp = NULL,
  ...
)
loo_epred(object, ...)
## S3 method for class 'brmsfit'
loo_linpred(
  object,
  type = c("mean", "var", "quantile"),
  probs = 0.5,
  psis_object = NULL,
  resp = NULL,
  ...
)
## S3 method for class 'brmsfit'
loo_predictive_interval(object, prob = 0.9, psis_object = NULL, ...)
object | 
 An object of class   | 
type | 
 The statistic to be computed on the results.
Can by either   | 
probs | 
 A vector of quantiles to compute.
Only used if   | 
psis_object | 
 An optional object returned by   | 
resp | 
 Optional names of response variables. If specified, predictions are performed only for the specified response variables.  | 
... | 
 Optional arguments passed to the underlying methods that is
  | 
prob | 
 For   | 
loo_predict, loo_epred, loo_linpred, and
loo_predictive_interval all return a matrix with one row per
observation and one column per summary statistic as specified by
arguments type and probs. In multivariate or categorical models
a third dimension is added to represent the response variables or categories,
respectively.
loo_predictive_interval(..., prob = p) is equivalent to
loo_predict(..., type = "quantile", probs = c(a, 1-a)) with
a = (1 - p)/2.
## Not run: 
## data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
  weight = c(ctl, trt),
  group = gl(2, 10, 20, labels = c("Ctl", "Trt"))
)
fit <- brm(weight ~ group, data = d)
loo_predictive_interval(fit, prob = 0.8)
## optionally log-weights can be pre-computed and reused
psis <- loo::psis(-log_lik(fit), cores = 2)
loo_predictive_interval(fit, prob = 0.8, psis_object = psis)
loo_predict(fit, type = "var", psis_object = psis)
loo_epred(fit, type = "var", psis_object = psis)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.