Nothing
#' R6 Class Representing PriorBSVARSV
#'
#' @description
#' The class PriorBSVARSV presents a prior specification for the bsvar model with Stochastic Volatility heteroskedasticity.
#'
#' @examples
#' prior = specify_prior_bsvar_sv$new(N = 3, p = 1) # a prior for 3-variable example with one lag
#' prior$A # show autoregressive prior mean
#'
#' @export
specify_prior_bsvar_sv = R6::R6Class(
"PriorBSVARSV",
inherit = specify_prior_bsvar,
public = list(
#' @field A an \code{NxK} matrix, the mean of the normal prior distribution for the parameter matrix \eqn{A}.
A = matrix(),
#' @field A_V_inv a \code{KxK} precision matrix of the normal prior distribution for each of the row of the parameter matrix \eqn{A}. This precision matrix is equation invariant.
A_V_inv = matrix(),
#' @field B_V_inv an \code{NxN} precision matrix of the generalised-normal prior distribution for the structural matrix \eqn{B}. This precision matrix is equation invariant.
B_V_inv = matrix(),
#' @field B_nu a positive integer greater of equal than \code{N}, a shape parameter of the generalised-normal prior distribution for the structural matrix \eqn{B}.
B_nu = NA,
#' @field hyper_nu_B a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_B = NA,
#' @field hyper_a_B a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{B}.
hyper_a_B = NA,
#' @field hyper_s_BB a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_s_BB = NA,
#' @field hyper_nu_BB a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_BB = NA,
#' @field hyper_nu_A a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_A = NA,
#' @field hyper_a_A a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{A}.
hyper_a_A = NA,
#' @field hyper_s_AA a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_s_AA = NA,
#' @field hyper_nu_AA a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_AA = NA,
#' @field sv_a_ a positive scalar, the shape parameter of the gamma prior in the hierarchical prior for \eqn{\sigma^2_{\omega}}.
sv_a_ = numeric(),
#' @field sv_s_ a positive scalar, the scale parameter of the gamma prior in the hierarchical prior for \eqn{\sigma^2_{\omega}}.
sv_s_ = numeric(),
#' @description
#' Create a new prior specification PriorBSVARSV.
#' @param N a positive integer - the number of dependent variables in the model.
#' @param p a positive integer - the autoregressive lag order of the SVAR model.
#' @param d a positive integer - the number of \code{exogenous} variables in the model.
#' @param stationary an \code{N} logical vector - its element set to \code{FALSE} sets the prior mean for the autoregressive parameters of the \code{N}th equation to the white noise process, otherwise to random walk.
#' @return A new prior specification PriorBSVARSV.
initialize = function(N, p, d = 0, stationary = rep(FALSE, N)){
stopifnot("Argument N must be a positive integer number." = N > 0 & N %% 1 == 0)
stopifnot("Argument p must be a positive integer number." = p > 0 & p %% 1 == 0)
stopifnot("Argument d must be a non-negative integer number." = d >= 0 & d %% 1 == 0)
stopifnot("Argument stationary must be a logical vector of length N." = length(stationary) == N & is.logical(stationary))
super$initialize(N, p, d, stationary)
self$sv_a_ = 1
self$sv_s_ = 0.1
}, # END initialize
#' @description
#' Returns the elements of the prior specification PriorBSVARSV as a \code{list}.
#'
#' @examples
#' # a prior for 3-variable example with four lags
#' prior = specify_prior_bsvar_sv$new(N = 3, p = 4)
#' prior$get_prior() # show the prior as list
#'
get_prior = function(){
list(
A = self$A,
A_V_inv = self$A_V_inv,
B_V_inv = self$B_V_inv,
B_nu = self$B_nu,
hyper_nu_B = self$hyper_nu_B,
hyper_a_B = self$hyper_a_B,
hyper_s_BB = self$hyper_s_BB,
hyper_nu_BB = self$hyper_nu_BB,
hyper_nu_A = self$hyper_nu_A,
hyper_a_A = self$hyper_a_A,
hyper_s_AA = self$hyper_s_AA,
hyper_nu_AA = self$hyper_nu_AA,
sv_a_ = self$sv_a_,
sv_s_ = self$sv_s_
)
} # END get_prior
) # END public
) # END specify_prior_bsvar_sv
#' R6 Class Representing StartingValuesBSVARSV
#'
#' @description
#' The class StartingValuesBSVARSV presents starting values for the bsvar model with Stochastic Volatility heteroskedasticity.
#'
#' @examples
#' # starting values for a bsvar model for a 3-variable system
#' sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
#'
#' @export
specify_starting_values_bsvar_sv = R6::R6Class(
"StartingValuesBSVARSV",
inherit = specify_starting_values_bsvar,
public = list(
#' @field A an \code{NxK} matrix of starting values for the parameter \eqn{A}.
A = matrix(),
#' @field B an \code{NxN} matrix of starting values for the parameter \eqn{B}.
B = matrix(),
#' @field hyper a \code{(2*N+1)x2} matrix of starting values for the shrinkage hyper-parameters of the
#' hierarchical prior distribution.
hyper = matrix(),
#' @field h an \code{NxT} matrix with the starting values of the log-volatility processes.
h = matrix(),
#' @field rho an \code{N}-vector with values of SV autoregressive parameters.
rho = numeric(),
#' @field omega an \code{N}-vector with values of SV process conditional standard deviations.
omega = numeric(),
#' @field sigma2v an \code{N}-vector with values of SV process conditional variances.
sigma2v = numeric(),
#' @field S an \code{NxT} integer matrix with the auxiliary mixture component indicators.
S = matrix(),
#' @field sigma2_omega an \code{N}-vector with variances of the zero-mean normal prior for \eqn{\omega_n}.
sigma2_omega = numeric(),
#' @field s_ a positive scalar with the scale of the gamma prior of the hierarchical prior for \eqn{\sigma^2_{\omega}}.
s_ = numeric(),
#' @description
#' Create new starting values StartingValuesBSVARSV.
#' @param N a positive integer - the number of dependent variables in the model.
#' @param p a positive integer - the autoregressive lag order of the SVAR model.
#' @param T a positive integer - the the time series dimension of the dependent variable matrix \eqn{Y}.
#' @param d a positive integer - the number of \code{exogenous} variables in the model.
#' @return Starting values StartingValuesBSVARSV.
initialize = function(N, p, T, d = 0){
stopifnot("Argument N must be a positive integer number." = N > 0 & N %% 1 == 0)
stopifnot("Argument p must be a positive integer number." = p > 0 & p %% 1 == 0)
stopifnot("Argument T must be a positive integer number." = T > 0 & T %% 1 == 0)
stopifnot("Argument d must be a non-negative integer number." = d >= 0 & d %% 1 == 0)
super$initialize(N, p, d)
self$h = matrix(rnorm(N * T, sd = .01), N, T)
self$rho = rep(.5, N)
self$omega = rep(.1, N)
self$sigma2v = rep(.1^2, N)
self$S = matrix(1, N, T)
self$sigma2_omega = rep(1, N)
self$s_ = rep(0.05, N)
}, # END initialize
#' @description
#' Returns the elements of the starting values StartingValuesBSVARSV as a \code{list}.
#'
#' @examples
#' # starting values for a bsvar model with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
#' sv$get_starting_values() # show starting values as list
#'
get_starting_values = function(){
list(
B = self$B,
A = self$A,
hyper = self$hyper,
h = self$h,
rho = self$rho,
omega = self$omega,
sigma2v = self$sigma2v,
S = self$S,
sigma2_omega = self$sigma2_omega,
s_ = self$s_
)
}, # END get_starting_values
#' @description
#' Returns the elements of the starting values StartingValuesBSVAR_SV as a \code{list}.
#' @param last_draw a list containing the last draw of the current MCMC run.
#' @return An object of class StartingValuesBSVAR including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
#'
#' @examples
#' # starting values for a bsvar model with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
#'
#' # Modify the starting values by:
#' sv_list = sv$get_starting_values() # getting them as list
#' sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
#' sv$set_starting_values(sv_list) # providing to the class object
#'
set_starting_values = function(last_draw) {
self$B = last_draw$B
self$A = last_draw$A
self$hyper = last_draw$hyper
self$h = last_draw$h
self$rho = last_draw$rho
self$omega = last_draw$omega
self$sigma2v = last_draw$sigma2v
self$S = last_draw$S
self$sigma2_omega = last_draw$sigma2_omega
self$s_ = last_draw$s_
} # END set_starting_values
) # END public
) # END specify_starting_values_bsvar_sv
#' R6 Class representing the specification of the BSVAR model with Stochastic Volatility heteroskedasticity.
#'
#' @description
#' The class BSVARSV presents complete specification for the BSVAR model with Stochastic Volatility heteroskedasticity.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_posterior_bsvar_sv}}
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_sv$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#'
#' @export
specify_bsvar_sv = R6::R6Class(
"BSVARSV",
public = list(
#' @field p a non-negative integer specifying the autoregressive lag order of the model.
p = numeric(),
#' @field identification an object IdentificationBSVARs with the identifying restrictions.
identification = list(),
#' @field prior an object PriorBSVARSV with the prior specification.
prior = list(),
#' @field data_matrices an object DataMatricesBSVAR with the data matrices.
data_matrices = list(),
#' @field starting_values an object StartingValuesBSVARSV with the starting values.
starting_values = list(),
#' @field centred_sv a logical value - if true a centred parameterisation of the Stochastic Volatility process is estimated. Otherwise, its non-centred parameterisation is estimated. See Lütkepohl, Shang, Uzeda, Woźniak (2022) for more info.
centred_sv = logical(),
#' @description
#' Create a new specification of the BSVAR model with Stochastic Volatility heteroskedasticity, BSVARSV.
#' @param data a \code{(T+p)xN} matrix with time series data.
#' @param p a positive integer providing model's autoregressive lag order.
#' @param B a logical \code{NxN} matrix containing value \code{TRUE} for the elements of the structural matrix \eqn{B} to be estimated and value \code{FALSE} for exclusion restrictions to be set to zero.
#' @param exogenous a \code{(T+p)xd} matrix of exogenous variables.
#' @param centred_sv a logical value. If \code{FALSE} a non-centred Stochastic Volatility processes for conditional variances are estimated. Otherwise, a centred process is estimated.
#' @param stationary an \code{N} logical vector - its element set to \code{FALSE} sets the prior mean for the autoregressive parameters of the \code{N}th equation to the white noise process, otherwise to random walk.
#' @return A new complete specification for the bsvar model with Stochastic Volatility heteroskedasticity, BSVARSV.
initialize = function(
data,
p = 1L,
B,
exogenous = NULL,
centred_sv = FALSE,
stationary = rep(FALSE, ncol(data))
) {
stopifnot("Argument p has to be a positive integer." = ((p %% 1) == 0 & p > 0))
self$p = p
TT = nrow(data)
T = TT - self$p
N = ncol(data)
d = 0
if (!is.null(exogenous)) {
d = ncol(exogenous)
}
if (missing(B)) {
message("The identification is set to the default option of lower-triangular structural matrix.")
B = matrix(FALSE, N, N)
B[lower.tri(B, diag = TRUE)] = TRUE
}
stopifnot("Incorrectly specified argument B." = (is.matrix(B) & is.logical(B)) | (length(B) == 1 & is.na(B)))
self$data_matrices = specify_data_matrices$new(data, p, exogenous)
self$identification = specify_identification_bsvars$new(N, B)
self$prior = specify_prior_bsvar_sv$new(N, p, d, stationary)
self$starting_values = specify_starting_values_bsvar_sv$new(N, self$p, T, d)
self$centred_sv = centred_sv
}, # END initialize
#' @description
#' Returns the data matrices as the DataMatricesBSVAR object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_sv$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#' spec$get_data_matrices()
#'
get_data_matrices = function() {
self$data_matrices$clone()
}, # END get_data_matrices
#' @description
#' Returns the identifying restrictions as the IdentificationBSVARs object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_sv$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#' spec$get_identification()
#'
get_identification = function() {
self$identification$clone()
}, # END get_identification
#' @description
#' Returns the prior specification as the PriorBSVARSV object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_sv$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#' spec$get_prior()
#'
get_prior = function() {
self$prior$clone()
}, # END get_prior
#' @description
#' Returns the starting values as the StartingValuesBSVARSV object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_sv$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#' spec$get_starting_values()
#'
get_starting_values = function() {
self$starting_values$clone()
} # END get_starting_values
) # END public
) # END specify_bsvar_sv
#' R6 Class Representing PosteriorBSVARSV
#'
#' @description
#' The class PosteriorBSVARSV contains posterior output and the specification including
#' the last MCMC draw for the bsvar model with Stochastic Volatility heteroskedasticity.
#' Note that due to the thinning of the MCMC output the starting value in element \code{last_draw}
#' might not be equal to the last draw provided in element \code{posterior}.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_bsvar_sv}}
#'
#' @examples
#' # This is a function that is used within estimate()
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 4)
#' set.seed(123)
#' estimate = estimate(specification, 5, thin = 1)
#' class(estimate)
#'
#' @export
specify_posterior_bsvar_sv = R6::R6Class(
"PosteriorBSVARSV",
private = list(
normalised = FALSE
), # END private
public = list(
#' @field last_draw an object of class BSVARSV with the last draw of the current MCMC run
#' as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
last_draw = list(),
#' @field posterior a list containing Bayesian estimation output.
posterior = list(),
#' @description
#' Create a new posterior output PosteriorBSVARSV.
#' @param specification_bsvar an object of class BSVARSV with the last draw of the current MCMC
#' run as the starting value.
#' @param posterior_bsvar a list containing Bayesian estimation output.
#' @return A posterior output PosteriorBSVARSV.
initialize = function(specification_bsvar, posterior_bsvar) {
stopifnot("Argument specification_bsvar must be of class BSVARSV." = any(class(specification_bsvar) == "BSVARSV"))
stopifnot("Argument posterior_bsvar must must contain MCMC output." = is.list(posterior_bsvar) & is.array(posterior_bsvar$B) & is.array(posterior_bsvar$A) & is.array(posterior_bsvar$hyper) & is.array(posterior_bsvar$h))
self$last_draw = specification_bsvar
self$posterior = posterior_bsvar
}, # END initialize
#' @description
#' Returns a list containing Bayesian estimation.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw)
#' set.seed(123)
#' estimate = estimate(specification, 5, thin = 1)
#' estimate$get_posterior()
#'
get_posterior = function(){
self$posterior
}, # END get_posterior
#' @description
#' Returns an object of class BSVARSV with the last draw of the current MCMC run as
#' the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
#'
#' @examples
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 4)
#' set.seed(123)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 5, thin = 1)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 5, thin = 1)
#'
get_last_draw = function(){
self$last_draw$clone()
}, # END get_last_draw
#' @description
#' Returns \code{TRUE} if the posterior has been normalised using \code{normalise_posterior()} and \code{FALSE} otherwise.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 4)
#'
#' # estimate the model
#' set.seed(123)
#' posterior = estimate(specification, 5, thin = 1)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag((-1) * sign(diag(BB))) %*% BB # set negative diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
is_normalised = function(){
private$normalised
}, # END is_normalised
#' @description
#' Sets the private indicator \code{normalised} to TRUE.
#' @param value (optional) a logical value to be passed to indicator \code{normalised}.
#'
#' @examples
#' # This is an internal function that is run while executing normalise_posterior()
#' # Observe its working by analysing the workflow:
#'
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 4)
#'
#' # estimate the model
#' set.seed(123)
#' posterior = estimate(specification, 5, thin = 1)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag(sign(diag(BB))) %*% BB # set positive diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
set_normalised = function(value){
if (missing(value)) {
private$normalised <- TRUE
} else {
private$normalised <- value
}
} # END set_normalised
) # END public
) # END specify_posterior_bsvar_sv
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.