Nothing
#' R6 Class Representing PriorBSVART
#'
#' @description
#' The class PriorBSVART presents a prior specification for the bsvar model with
#' t-distributed structural shocks.
#'
#' @examples
#' prior = specify_prior_bsvar_t$new(N = 3, p = 1) # specify the prior
#' prior$A # show autoregressive prior mean
#'
#' @export
specify_prior_bsvar_t = R6::R6Class(
"PriorBSVART",
inherit = specify_prior_bsvar,
public = list(
#' @field A an \code{NxK} matrix, the mean of the normal prior distribution
#' for the parameter matrix \eqn{A}.
A = matrix(),
#' @field A_V_inv a \code{KxK} precision matrix of the normal prior
#' distribution for each of the row of the parameter matrix \eqn{A}. This
#' precision matrix is equation invariant.
A_V_inv = matrix(),
#' @field B_V_inv an \code{NxN} precision matrix of the generalised-normal
#' prior distribution for the structural matrix \eqn{B}. This precision
#' matrix is equation invariant.
B_V_inv = matrix(),
#' @field B_nu a positive integer greater of equal than \code{N}, a shape
#' parameter of the generalised-normal prior distribution for the structural
#' matrix \eqn{B}.
B_nu = NA,
#' @field hyper_nu_B a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_B = NA,
#' @field hyper_a_B a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{B}.
hyper_a_B = NA,
#' @field hyper_s_BB a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_s_BB = NA,
#' @field hyper_nu_BB a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_BB = NA,
#' @field hyper_nu_A a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_A = NA,
#' @field hyper_a_A a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{A}.
hyper_a_A = NA,
#' @field hyper_s_AA a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_s_AA = NA,
#' @field hyper_nu_AA a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_AA = NA
) # END public
) # END specify_prior_bsvar_t
#' R6 Class Representing StartingValuesBSVART
#'
#' @description
#' The class StartingValuesBSVART presents starting values for the bsvar model
#' with t-distributed structural shocks.
#'
#' @examples
#' # starting values for a bsvar model for a 3-variable system
#' sv = specify_starting_values_bsvar_t$new(N = 3, p = 1, T = 100)
#'
#' @export
specify_starting_values_bsvar_t = R6::R6Class(
"StartingValuesBSVART",
inherit = specify_starting_values_bsvar,
public = list(
#' @field A an \code{NxK} matrix of starting values for the parameter \eqn{A}.
A = matrix(),
#' @field B an \code{NxN} matrix of starting values for the parameter \eqn{B}.
B = matrix(),
#' @field hyper a \code{(2*N+1)x2} matrix of starting values for the shrinkage hyper-parameters of the
#' hierarchical prior distribution.
hyper = matrix(),
#' @field lambda a \code{Tx1} vector of starting values for latent variables.
lambda = numeric(),
#' @field df a positive scalar with starting values for the degrees of
#' freedom parameter of the Student-t conditional distribution of structural
#' shock.
df = NA,
#' @description
#' Create new starting values StartingValuesBSVART
#' @param N a positive integer - the number of dependent variables in the model.
#' @param p a positive integer - the autoregressive lag order of the SVAR model.
#' @param T a positive integer - the the time series dimension of the dependent variable matrix \eqn{Y}.
#' @param d a positive integer - the number of \code{exogenous} variables in the model.
#' @return Starting values StartingValuesBSVART
initialize = function(N, p, T, d = 0){
stopifnot("Argument N must be a positive integer number." = N > 0 & N %% 1 == 0)
stopifnot("Argument p must be a positive integer number." = p > 0 & p %% 1 == 0)
stopifnot("Argument T must be a positive integer number." = T > 0 & T %% 1 == 0)
stopifnot("Argument d must be a non-negative integer number." = d >= 0 & d %% 1 == 0)
super$initialize(N, p, d)
self$lambda = rep(1, T)
self$df = 6
}, # END initialize
#' @description
#' Returns the elements of the starting values StartingValuesBSVAR as a \code{list}.
#'
#' @examples
#' # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar$new(N = 3, p = 1)
#' sv$get_starting_values() # show starting values as list
#'
get_starting_values = function(){
list(
B = self$B,
A = self$A,
hyper = self$hyper,
lambda = self$lambda,
df = self$df
)
}, # END get_starting_values
#' @description
#' Returns the elements of the starting values StartingValuesBSVAR as a \code{list}.
#' @param last_draw a list containing the last draw of elements \code{B} - an \code{NxN} matrix,
#' \code{A} - an \code{NxK} matrix, and \code{hyper} - a vector of 5 positive real numbers.
#' @return An object of class StartingValuesBSVAR including the last draw of the current MCMC
#' as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
#'
#' @examples
#' # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar$new(N = 3, p = 1)
#'
#' # Modify the starting values by:
#' sv_list = sv$get_starting_values() # getting them as list
#' sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
#' sv$set_starting_values(sv_list) # providing to the class object
#'
set_starting_values = function(last_draw) {
self$B = last_draw$B
self$A = last_draw$A
self$hyper = last_draw$hyper
self$lambda = last_draw$lambda
self$df = last_draw$df
} # END set_starting_values
) # END public
) # END specify_starting_values_bsvar_t
#' R6 Class representing the specification of the BSVAR model with t-distributed structural shocks.
#'
#' @description
#' The class BSVART presents complete specification for the BSVAR model with t-distributed structural shocks.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_posterior_bsvar_t}}
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_t$new(
#' data = us_fiscal_lsuw,
#' p = 4
#' )
#'
#' @export
specify_bsvar_t = R6::R6Class(
"BSVART",
inherit = specify_bsvar,
public = list(
#' @field p a non-negative integer specifying the autoregressive lag order of the model.
p = numeric(),
#' @field identification an object IdentificationBSVARs with the identifying restrictions.
identification = list(),
#' @field prior an object PriorBSVART with the prior specification.
prior = list(),
#' @field data_matrices an object DataMatricesBSVAR with the data matrices.
data_matrices = list(),
#' @field starting_values an object StartingValuesBSVART with the starting values.
starting_values = list(),
#' @field adaptiveMH a vector of two values setting the Robust Adaptive
#' Metropolis sampler for df: target acceptance rate and adaptive rate.
adaptiveMH = numeric(),
#' @description
#' Create a new specification of the BSVAR model with t-distributed structural shocks, BSVART.
#' @param data a \code{(T+p)xN} matrix with time series data.
#' @param p a positive integer providing model's autoregressive lag order.
#' @param B a logical \code{NxN} matrix containing value \code{TRUE} for the
#' elements of the structural matrix \eqn{B} to be estimated and value
#' \code{FALSE} for exclusion restrictions to be set to zero.
#' @param exogenous a \code{(T+p)xd} matrix of exogenous variables.
#' @param stationary an \code{N} logical vector - its element set to
#' \code{FALSE} sets the prior mean for the autoregressive parameters of the
#' \code{N}th equation to the white noise process, otherwise to random walk.
#' @return A new complete specification for the bsvar model with t-distributed
#' structural shocks, BSVART.
initialize = function(
data,
p = 1L,
B,
exogenous = NULL,
stationary = rep(FALSE, ncol(data))
) {
stopifnot("Argument p has to be a positive integer." = ((p %% 1) == 0 & p > 0))
self$p = p
TT = nrow(data)
T = TT - self$p
N = ncol(data)
d = 0
if (!is.null(exogenous)) {
d = ncol(exogenous)
}
if (missing(B)) {
message("The identification is set to the default option of lower-triangular structural matrix.")
B = matrix(FALSE, N, N)
B[lower.tri(B, diag = TRUE)] = TRUE
}
stopifnot("Incorrectly specified argument B." = (is.matrix(B) & is.logical(B)) | (length(B) == 1 & is.na(B)))
self$data_matrices = specify_data_matrices$new(data, p, exogenous)
self$identification = specify_identification_bsvars$new(N, B)
self$prior = specify_prior_bsvar_t$new(N, p, d, stationary)
self$starting_values = specify_starting_values_bsvar_t$new(N, self$p, T, d)
self$adaptiveMH = c(0.44, 0.6)
} # END initialize
) # END public
) # END specify_bsvar_t
#' R6 Class Representing PosteriorBSVART
#'
#' @description
#' The class PosteriorBSVART contains posterior output and the specification including
#' the last MCMC draw for the bsvar model with t-distributed structural shocks.
#' Note that due to the thinning of the MCMC output the starting value in element \code{last_draw}
#' might not be equal to the last draw provided in element \code{posterior}.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_bsvar_t}}
#'
#' @examples
#' # This is a function that is used within estimate()
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 4)
#' set.seed(123)
#' estimate = estimate(specification, 10)
#' class(estimate)
#'
#' @export
specify_posterior_bsvar_t = R6::R6Class(
"PosteriorBSVART",
private = list(
normalised = FALSE
), # END private
public = list(
#' @field last_draw an object of class BSVART with the last draw of the
#' current MCMC run as the starting value to be passed to the continuation
#' of the MCMC estimation using \code{estimate()}.
last_draw = list(),
#' @field posterior a list containing Bayesian estimation output.
posterior = list(),
#' @description
#' Create a new posterior output PosteriorBSVART.
#' @param specification_bsvar an object of class BSVART with the last draw
#' of the current MCMC run as the starting value.
#' @param posterior_bsvar a list containing Bayesian estimation output.
#' @return A posterior output PosteriorBSVART.
initialize = function(specification_bsvar, posterior_bsvar) {
stopifnot("Argument specification_bsvar must be of class BSVART." = any(class(specification_bsvar) == "BSVART"))
stopifnot("Argument posterior_bsvar must must contain MCMC output." = is.list(posterior_bsvar) & is.array(posterior_bsvar$B) & is.array(posterior_bsvar$A) & is.numeric(posterior_bsvar$df))
self$last_draw = specification_bsvar
self$posterior = posterior_bsvar
}, # END initialize
#' @description
#' Returns a list containing Bayesian estimation output.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw)
#' set.seed(123)
#' estimate = estimate(specification, 10)
#' estimate$get_posterior()
#'
get_posterior = function(){
self$posterior
}, # END get_posterior
#' @description
#' Returns an object of class BSVART with the last draw of the current MCMC
#' run as the starting value to be passed to the continuation of the MCMC
#' estimation using \code{estimate()}.
#'
#' @examples
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 4)
#'
#' # run the burn-in
#' set.seed(123)
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 10)
#'
get_last_draw = function(){
self$last_draw$clone()
}, # END get_last_draw
#' @description
#' Returns \code{TRUE} if the posterior has been normalised using \code{normalise_posterior()} and \code{FALSE} otherwise.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 4)
#'
#' # estimate the model
#' set.seed(123)
#' posterior = estimate(specification, 10)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag((-1) * sign(diag(BB))) %*% BB # set negative diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
is_normalised = function(){
private$normalised
}, # END is_normalised
#' @description
#' Sets the private indicator \code{normalised} to TRUE.
#' @param value (optional) a logical value to be passed to indicator \code{normalised}.
#'
#' @examples
#' # This is an internal function that is run while executing normalise_posterior()
#' # Observe its working by analysing the workflow:
#'
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 4)
#' set.seed(123)
#'
#' # estimate the model
#' posterior = estimate(specification, 10)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag(sign(diag(BB))) %*% BB # set positive diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
set_normalised = function(value){
if (missing(value)) {
private$normalised <- TRUE
} else {
private$normalised <- value
}
} # END set_normalised
) # END public
) # END specify_posterior_bsvar_t
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.