Nothing
# expression.matrix <- as.matrix(read.csv(
# system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
# row.names = 1
# ))
#
# metadata <- data.frame(
# srr = colnames(expression.matrix),
# timepoint = rep(c("0h", "12h", "36h"), each = 2)
# )
#
# suppressMessages(
# anno <- AnnotationDbi::select(
# getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
# keys = rownames(expression.matrix),
# keytype = 'ENSEMBL',
# columns = 'SYMBOL'
# ) %>%
# dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
# dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))
# )
#
# DEresults <- DEanalysis_edger(
# expression.matrix = expression.matrix[, 1:4],
# condition = metadata$timepoint[1:4],
# var1 = "0h",
# var2 = "12h",
# anno = anno
# ) %>%
# dplyr::filter(abs(log2FC) > 1, pvalAdj < 0.05) %>%
# dplyr::arrange(dplyr::desc(abs(log2FC)))
# DEgenes <- DEresults$gene_id
# expression.matrix <- expression.matrix[DEgenes, ]
#
# weightMat1 <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5"), "timepoint", c("0h", "12h", "36h"), "GENIE3")
# weightMat2 <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5"), "timepoint", c("0h", "12h"), "GENIE3")
# weightMat3 <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5"), "timepoint", c("0h", "36h"), "GENIE3")
# weightMat4 <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5"), "timepoint", c("12h", "36h"), "GENIE3")
# weightMatGNET <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5", "Nupr1", "Dnmt3l", "Enox1", "Itga1"),
# "timepoint", c("0h", "12h", "36h"), "GNET2")
#
# if(FALSE){
# weightMatGNET <- infer_GRN(expression.matrix, metadata, anno, 13,
# c("Trpm1", "Sp5"),
# "timepoint", c("0h", "12h", "36h"), "GNET2")
# regulators <- c("Trpm1", "Sp5")
# samples.cond <- c("0h", "12h", "36h")
# regulator.ids <- anno$ENSEMBL[match(regulators, anno$NAME)]
# samples <- metadata$timepoint %in% samples.cond
# gnet_out <- gnet_modified(expression.matrix[, samples], reg_names = regulator.ids)
# # for(i in which(sapply(gnet_out$regulators, is.null))){
# # gnet_out$regulators[[i]] <- NULL
# # }
# # for(i in which(sapply(gnet_out$target_genes, is.null))){
# # gnet_out$target_genes[[i]] <- NULL
# # }
# res <- GNET2::extract_edges(gnet_out)
# }
#
# plotConnections <- 5
#
# recurring_targets_1 <- find_targets_with_recurring_edges(list(weightMat1), plotConnections)
# recurring_targets <- find_targets_with_recurring_edges(
# list(weightMat1, weightMat2, weightMat3, weightMat4), plotConnections
# )
#
# # plot_GRN(weightMat1, anno, plotConnections, 1, 4, recurring_targets)
# # plot_GRN(weightMat2, anno, plotConnections, 1, 4, recurring_targets)
# # plot_GRN(weightMat3, anno, plotConnections, 1, 4, recurring_targets)
# # plot_GRN(weightMat4, anno, plotConnections, 1, 4, recurring_targets)
#
# test_that("recurring regulators calculation works", {
# expect_equal(recurring_regulators_1, character(0))
# expect_equal(recurring_regulators, "ENSMUSG00000028766")
# })
#
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.