HQ | R Documentation |
Compute HQ of VAR(p), VHAR, BVAR(p), and BVHAR
HQ(object, ...)
## S3 method for class 'logLik'
HQ(object, ...)
## S3 method for class 'varlse'
HQ(object, ...)
## S3 method for class 'vharlse'
HQ(object, ...)
## S3 method for class 'bvarmn'
HQ(object, ...)
## S3 method for class 'bvarflat'
HQ(object, ...)
## S3 method for class 'bvharmn'
HQ(object, ...)
object |
A |
... |
not used |
The formula is
HQ = -2 \log p(y \mid \hat\theta) + k \log\log(T)
which can be computed by
AIC(object, ..., k = 2 * log(log(nobs(object))))
with stats::AIC()
.
Let \tilde{\Sigma}_e
be the MLE
and let \hat{\Sigma}_e
be the unbiased estimator (covmat
) for \Sigma_e
.
Note that
\tilde{\Sigma}_e = \frac{n - k}{T} \hat{\Sigma}_e
Then
HQ(p) = \log \det \Sigma_e + \frac{2 \log \log n}{n}(\text{number of freely estimated parameters})
where the number of freely estimated parameters is pm^2
.
HQ value.
Hannan, E.J. and Quinn, B.G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.
Hannan, E.J. and Quinn, B.G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
Quinn, B.G. (1980). Order Determination for a Multivariate Autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 42: 182-185.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.