View source: R/summary-forecast.R
rmafe | R Documentation |
This function computes RMAFE (Mean Absolute Forecast Error Relative to the Benchmark)
rmafe(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
rmafe(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
rmafe(x, pred_bench, y, ...)
x |
Forecasting object to use |
pred_bench |
The same forecasting object from benchmark model |
y |
Test data to be compared. should be the same format with the train data. |
... |
not used |
Let e_t = y_t - \hat{y}_t
.
RMAFE is the ratio of L1 norm of e_t
from forecasting object and from benchmark model.
RMAFE = \frac{sum(\lVert e_t \rVert)}{sum(\lVert e_t^{(b)} \rVert)}
where e_t^{(b)}
is the error from the benchmark model.
RMAFE vector corresponding to each variable.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.
BaĆbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.